Skip to main content

Advertisement

Log in

Frailty modelling approaches for semi-competing risks data

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

In the semi-competing risks situation where only a terminal event censors a non-terminal event, observed event times can be correlated. Recently, frailty models with an arbitrary baseline hazard have been studied for the analysis of such semi-competing risks data. However, their maximum likelihood estimator can be substantially biased in the finite samples. In this paper, we propose effective modifications to reduce such bias using the hierarchical likelihood. We also investigate the relationship between marginal and hierarchical likelihood approaches. Simulation results are provided to validate performance of the proposed method. The proposed method is illustrated through analysis of semi-competing risks data from a breast cancer study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aalen O, Borgan O, Gjessing HK (2008) Survival and event history analysis. Springer, New York

    Book  Google Scholar 

  • Andersen PK, Klein JP, Knudsen K, Palacios RT (1997) Estimation of variance in Cox’s regression model with shared gamma frailties. Biometrics 53:1475–1484

    Article  MathSciNet  Google Scholar 

  • Barker P, Henderson R (2005) Small sample bias in the gamma frailty model for univariate survival. Lifetime Data Anal 11:265–284

    Article  MathSciNet  Google Scholar 

  • Breslow NE (1974) Covariance analysis of censored survival data. Biometrics 30:89–99

    Article  Google Scholar 

  • Chen YH (2012) Maximum likelihood analysis of semicompeting risks data with semiparametric regression models. Lifetime Data Anal 18:36–57

    Article  MathSciNet  Google Scholar 

  • Engel E, Keen A (1996) Discussion of Lee and Nelder’s paper. J R Stat Soc Ser B 58:656–657

    Google Scholar 

  • Fan J, Li R (2002) Variable selection for Cox’s proportional hazards model and frailty model. Ann Stat 30:74–99

    Article  MathSciNet  Google Scholar 

  • Fine JP, Jiang H, Chappell R (2001) On semi-competing risks data. Biometrika 88:907–919

    Article  MathSciNet  Google Scholar 

  • Fisher B, Costantino J, Redmond C et al (1989) A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen receptor-positive tumors. N Engl J Med 320:479–484

    Article  Google Scholar 

  • Fisher B, Dignam J, Bryant J et al (1996) Five versus more than five years of tamoxifen therapy for breast cancer patients with negative lymph nodes and estrogen receptor- positive tumors. J Natl Cancer Inst 88:1529–1542

    Article  Google Scholar 

  • Gu MG, Sun L, Huang C (2004) A universal procedure for parametric frailty models. J Stat Comput Simul 74:1–13

    Article  MathSciNet  Google Scholar 

  • Ha ID, Lee Y (2003) Estimating frailty models via Poisson hierarchical generalized linear models. J Comput Graph Stat 12:663–681

    Article  MathSciNet  Google Scholar 

  • Ha ID, Lee Y, Song JK (2001) Hierarchical likelihood approach for frailty models. Biometrika 88:233–243

    Article  MathSciNet  Google Scholar 

  • Ha ID, Lee Y, Pawitan Y (2007) Genetic mixed linear models for twin survival data. Behav Genet 37:621–630

    Article  Google Scholar 

  • Ha ID, Noh M, Lee Y (2010) Bias reduction of likelihood estimators in semiparametric frailty models. Scand J of Stat 37:307–320

    Article  MathSciNet  Google Scholar 

  • Ha ID, Sylvester R, Legrand C, MacKenzie G (2011) Frailty modelling for survival data from multi-centre clinical trials. Stat Med 30:2144–2159

    Article  MathSciNet  Google Scholar 

  • Ha ID, Jeong J-H, Lee Y (2017) Statistical modelling of survival data with random effects: h-likelihood approach. Springer, Singapore

    Book  Google Scholar 

  • Heize G, Schemper M (2001) A solution to the problem of monotone likelihood in Cox regression. Biometrics 57:114–119

    Article  MathSciNet  Google Scholar 

  • Lawless JF (2003) Statistical models and methods for lifetime data, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Lee Y, Nelder JA (1996) Hierarchical generalized linear models (with discussion). J R Stat Soc Ser B 58:619–678

    MATH  Google Scholar 

  • Lee Y, Nelder JA (2001) Hierarchical generalised linear models: a synthesis of generalised linear models, random-effect models and structured dispersions. Biometrika 88:987–1006

    Article  MathSciNet  Google Scholar 

  • Lee Y, Nelder JA (2009) Likelihood inference for models with unobservables: another view (with discussion). Stat Sci 24:255–293

    Article  Google Scholar 

  • Lee KH, Haneuse S, Schrag D, Dominici F (2015) Bayesian semiparametric analysis of semicompeting risks data: investigating hospital readmission after a pancreatic cancer diagnosis. J R Stat Soc Ser C 64:253–273

    Article  MathSciNet  Google Scholar 

  • Lee Y, Nelder JA, Pawitan Y (2017) Generalised linear models with random effects: unified analysis via h-likelihood, 2nd edn. Chapman and Hall, Baca Raton

    MATH  Google Scholar 

  • Neyman J, Scott EL (1948) Consistent estimates based on partially consistent observations. Econometrica 16:1–32

    Article  MathSciNet  Google Scholar 

  • Noh M, Lee Y (2007) REML estimation for binary data in GLMMs. J Multivar Anal 98:896–915

    Article  MathSciNet  Google Scholar 

  • Ripatti S, Palmgren J (2000) Estimation of multivariate frailty models using penalized partial likelihood. Biometrics 56:1016–1022

    Article  MathSciNet  Google Scholar 

  • Self SG, Liang KY (1987) Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J Am Stat Assoc 82:605–610

    Article  MathSciNet  Google Scholar 

  • Stram DO, Lee JW (1994) Variance components testing in the longitudinal mixed effects model. Biometrics 50:1171–1177

    Article  Google Scholar 

  • Therneau TM, Grambsch PM (2000) Modelling survival data: extending the Cox model. Springer, New York

    Book  Google Scholar 

  • Therneau TM, Grambsch PM, Pankratz VS (2003) Penalized survival models and frailty. J Comput Graph Stat 12:156–175

    Article  MathSciNet  Google Scholar 

  • Tierney L, Kadane JB (1986) Accurate approximations for posterior moments and marginal densities. J Am Stat Assoc 81:82–86

    Article  MathSciNet  Google Scholar 

  • Varadhan R, Xue QL, Bandeen-Roche K (2014) Semicompeting risks in aging research: methods, issues and needs. Lifetime Data Anal 20:538–562

    Article  MathSciNet  Google Scholar 

  • Xu J, Kalbfleisch JD, Tai B (2010) Statistical analysis of illness-death processes and semicompeting risks data. Biometrics 66:716–725

    Article  MathSciNet  Google Scholar 

  • Zhang Y, Chen MH, Ibrahim JG, Zeng D, Chen Q, Pan Z, Xue X (2014) Bayesian gamma frailty models for survival data with semi-competing risks and treatment switching. Lifetime Data Anal 20:76–105

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Dr. Ha’s research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2015R1D1A3A01015663). Dr. Xiang’s research was supported in part by the Singapore MOE AcRF (MOE2013-T2-2-118). Dr. Jeong’s research was supported in part by National Institute of Health (NIH) grants 5-U10-CA69651-11. Dr. Lee’s research was supported by an NRF grant funded by Korea government (MEST) (No. 2011-0030810).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Do Ha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 64 KB)

Appendix

Appendix

1.1 Appendix A: Marginal-likelihood estimation procedure

For gamma frailty models with \(E(u_{i})=1\) and var\((u_{i})=\alpha \), we have an explicit marginal likelihood as follows. Since the second term of h-likelihood in (8) under the gamma frailty is given by

$$\begin{aligned} \ell _{2i}=\ell _{2i}(\alpha ; v_{i})=\alpha ^{-1}(v_i-u_i) +c(\alpha ), \end{aligned}$$

with \(c(\alpha )=-\log \Gamma (\alpha ^{-1}) -\alpha ^{-1} \log \alpha \), from (8) and (15) we have that

$$\begin{aligned} m= & {} \sum _{i} [\delta _{i1} \{\log \lambda _{01}(y_{i1}) + x_{i}^T\beta _1 \} + \delta _{i2} (1-\delta _{i1}) \{\log \lambda _{02}(y_{i2})+ x_i^T\beta _2 \}\nonumber \\&+~ \delta _{i1} \delta _{i2} \{\log \lambda _{03}(y_{i2}) + x_i^T \beta _3\}]\nonumber \\&-\sum _{i}[(\alpha ^{-1}+~\delta _{i+})\log (1+\alpha \mu _{i+}) -\log \{\alpha ^{\delta _{i+}} \Gamma (\alpha ^{-1}+\delta _{i+} )/\Gamma (\alpha ^{-1})\} ]\nonumber \\= & {} \sum _{k_1}d_{1(k_1)}\log \lambda _{01k_1}+\sum _{i} \delta _{i1}(x_i^T\beta _1) + \sum _{k_2}d_{2(k_2)}\log \lambda _{02k_2}\nonumber \\&+\sum _{i} \delta _{i2}(1-\delta _{i1})(x_i^T\beta _2) + \sum _{k_3}d_{3(k_3)}\log \lambda _{03k_3}+\sum _{i} \delta _{i1}\delta _{i2}(x_i^T\beta _3)\nonumber \\&-\sum _{i}[(\alpha ^{-1}+~\delta _{i+})\log (1+\alpha \mu _{i+}) -\delta _{i1}\delta _{i2} \log (1+\alpha )], \end{aligned}$$
(A.1)

where \(\delta _{i+}= \delta _{i1} + \delta _{i2}\) and \(\mu _{i+}=\sum _{j=1}^{3} \mu _{ij}\) with

$$\begin{aligned} \mu _{i1}= & {} \Lambda _{01}(y_{i1})\exp (x_{i}^T \beta _1)=\sum _{k_1} \lambda _{01k_1} I(y_{1(k_{1})} \le y_{i1}) \exp (x_i^T \beta _1),\\ \mu _{i2}= & {} \Lambda _{02}(y_{i2})\exp (x_{i}^T \beta _2)=\sum _{k_2} \lambda _{02k_2} I(y_{2(k_{2})} \le y_{i1}) \exp (x_i^T \beta _2),\\ \mu _{i3}= & {} \Lambda _{03}(y_{i1}, y_{i2})\exp (x_{i}^T \beta _3) =\sum _{k_3} \lambda _{03k_3} I(y_{i1} < y_{3(k_3)}\le y_{i2} ) \exp (x_i^T \beta _3). \end{aligned}$$

In fact, the marginal likelihood (A.1) is the same as that of Xu et al. (2010).

Under the gamma frailty, the score equations for \(\beta \) are given by

$$\begin{aligned} \frac{\partial m}{\partial \beta _1}= & {} \sum _i \biggl \{ \delta _{i1}- \biggl (\frac{\alpha ^{-1} + \delta _{i+}}{\alpha ^{-1} + \mu _{i+}} \biggl ) \mu _{i1} \biggl \} x_i, \end{aligned}$$
(A.2)
$$\begin{aligned} \frac{\partial m}{\partial \beta _2}= & {} \sum _i \biggl \{ \delta _{i2}(1-\delta _{i1})- \biggl (\frac{\alpha ^{-1} + \delta _{i+}}{\alpha ^{-1} + \mu _{i+}} \biggl ) \mu _{i2} \biggl \} x_i, \end{aligned}$$
(A.3)
$$\begin{aligned} \frac{\partial m}{\partial \beta _3}= & {} \sum _i \biggl \{ \delta _{i1}\delta _{i2}- \biggl (\frac{\alpha ^{-1} + \delta _{i+}}{\alpha ^{-1} + \mu _{i+}} \biggl ) \mu _{i3} \biggl \} x_i. \end{aligned}$$
(A.4)

In particular, the solutions of \(\partial m/\partial \lambda _{0jk_j}=0~(j=1,2,3)\) lead to closed forms:

$$\begin{aligned} {\widetilde{\lambda }}_{0jk_j}(\beta ,\alpha )=\frac{d_{j(k_j)}}{\sum _{~i \in R_{(k_j)}}\exp (x_i^T \beta _j){\tilde{u}}_i}, \end{aligned}$$
(A.5)

where \({\tilde{u}}_i=(\alpha ^{-1}+\delta _{i+})/(\alpha ^{-1}+\mu _{i+})\). We see that the score equations of \((\beta , \lambda _{0j})\) in (A.2)–(A.4) and (A.5) are extensions of those in the shared gamma frailty models (Andersen et al. 1997). Finally, the score equation for the frailty parameter \(\alpha \) is given by

$$\begin{aligned} \frac{\partial m}{\partial \alpha }=\sum _i \biggl \{ \delta _{i1}\delta _{i2} (1+\alpha )^{-1} +\alpha ^{-2}\log (1+\alpha \mu _{i+}) -(\alpha ^{-1} +\delta _{i+})\mu _{i+} (1+\alpha \mu _{i+})^{-1} \biggl \}. \end{aligned}$$

Then the estimates of fixed parameters \((\beta ,\alpha , \lambda _{0})\) can be obtained using a numerical iterative method such as the Newton-Raphson method. Note that the maximum likelihood estimating equations, \(\partial m/\partial (\beta ,\alpha , \lambda _{0})=0\), by Xu et al. (2010) are equivalent to \(\partial m^{*}/\partial (\beta ,\alpha )=0\), where \(m^{*}\) is the profile marginal likelihood in (16).

1.2 Appendix B: Comparison of h-likelihood with marginal likelihood

We assume that \(\alpha \) is known. Recall that given \((\beta , v)\), the score equations \(\partial h/\partial \lambda _{0jk_j}=0~(j=1,2,3)\) provide the non-parametric maximum h-likelihood estimators in Sect. 2.2, i.e.

$$\begin{aligned} \widehat{\lambda }_{0jk_j}(\beta ,v)=\frac{d_{j(k_j)}}{\sum _{~i \in R_{(k_j)}}\exp (x_i^T \beta _j)u_i}. \end{aligned}$$

The maximum h-likelihood estimating equations for \(\beta \), under the gamma frailty, become

$$\begin{aligned} \frac{\partial h}{\partial \beta _1} \left| _{{\lambda _{01}={\widehat{\lambda }}_{01}} }\frac{}{} \right.= & {} \sum _i \biggl \{ \delta _{i1}- \mu _{i1}u_i \biggl \} x_i \left| _{{\lambda _{01}={\widehat{\lambda }}_{01}} }=0\frac{}{} \right. , \end{aligned}$$
(B.1)
$$\begin{aligned} \frac{\partial h}{\partial \beta _2}\left| _{{\lambda _{02}={\widehat{\lambda }}_{02}} }\frac{}{} \right.= & {} \sum _i \biggl \{ \delta _{i2}(1-\delta _{i1})-\mu _{i2} u_i \biggl \} x_i \left| _{{\lambda _{02}={\widehat{\lambda }}_{02}} }=0\frac{}{} \right. , \end{aligned}$$
(B.2)
$$\begin{aligned} \frac{\partial h}{\partial \beta _3}\left| _{{\lambda _{03}={\widehat{\lambda }}_{03}} }\frac{}{} \right.= & {} \sum _i \biggl \{ \delta _{i1}\delta _{i2}- \mu _{i3}u_i \biggl \} x_i \left| _{{\lambda _{03}={\widehat{\lambda }}_{03}} }=0\frac{}{} \right. . \end{aligned}$$
(B.3)

From

$$\begin{aligned} \frac{\partial h}{\partial v_i}= (\delta _{i+}-\mu _{i+}u_i) +\alpha ^{-1} -\alpha ^{-1}u_i=0, \end{aligned}$$

we have that

$$\begin{aligned} {\hat{u}}_i=\frac{\alpha ^{-1}+\delta _{i+}}{\alpha ^{-1}+\mu _{i+}}, \end{aligned}$$
(B.4)

which also becomes \(E(u_i|y_i^o)\) because the conditional distribution of \(u_i\) given the observed data \(y_i^o=(y_{i1}, y_{i2}, \delta _{i1}, \delta _{i2})\) is gamma. Here \(\delta _{i+}=\delta _{i1}+\delta _{i2}\) and \(\mu _{i+}=\mu _{i1} +\mu _{i2}+\mu _{i3}\). From (12) we see that the estimating Eqs. (B.1)–(B.3) with (B.4) are equivalent to the estimating Eqs. (A.2)–(A.4) with (A.5), given by

$$\begin{aligned} \frac{\partial m}{\partial \beta _1} \left| _{{\lambda _{01}={{\widetilde{\lambda }}}_{01}} }\frac{}{} \right.= & {} \sum _i \biggl \{ \delta _{i1}- \mu _{i1} \biggl (\frac{\alpha ^{-1} + \delta _{i+}}{\alpha ^{-1} + \mu _{i+}} \biggl ) \biggl \} x_i,\left| _{{\lambda _{01}={{\widetilde{\lambda }}}_{01}} }=0\frac{}{} \right. \end{aligned}$$
(B.5)
$$\begin{aligned} \frac{\partial m}{\partial \beta _2} \left| _{{\lambda _{02}={{\widetilde{\lambda }}}_{02}} }\frac{}{} \right.= & {} \sum _i \biggl \{ \delta _{i2}(1-\delta _{i1})- \mu _{i2} \biggl (\frac{\alpha ^{-1} + \delta _{i+}}{\alpha ^{-1} + \mu _{i+}} \biggl ) \biggl \} x_i,\left| _{{\lambda _{02}={{\widetilde{\lambda }}}_{02}} }=0\frac{}{} \right. \quad \quad \end{aligned}$$
(B.6)
$$\begin{aligned} \frac{\partial m}{\partial \beta _3} \left| _{{\lambda _{03}={{\widetilde{\lambda }}}_{03}} }\frac{}{} \right.= & {} \sum _i \biggl \{ \delta _{i1}\delta _{i2}- \mu _{i3} \biggl (\frac{\alpha ^{-1} + \delta _{i+}}{\alpha ^{-1} + \mu _{i+}} \biggl ) \biggl \} x_i,\left| _{{\lambda _{03}={{\widetilde{\lambda }}}_{03}} }=0\frac{}{} \right. . \end{aligned}$$
(B.7)

Accordingly, the maximum h-likelihood (MHL) estimator for \(\beta \) given \(\alpha \) is the same as the marginal maximum likelihood (ML) estimator as shown in the standard gamma frailty models (Ha et al. 2001; Ha and Lee 2003). Note, however, that both methods give different estimators for \(\alpha \).

The marginal likelihood does not often have an analytic form (e.g. log-normal frailty model), so that the natural approach to the maximum likelihood estimator (MLE) is to use the EM treating the random effects as missing data. Below we present the comparison of the proposed h-likelihood method with the EM method for obtaining the MLE. The EM equations for fixed parameters \(\theta \) can be expressed via the h-likelihood as follows:

$$\begin{aligned} E(\partial h/\partial \theta \vert \mathrm{data})=0, \end{aligned}$$

which is equivalent to the ML equations, i.e. \(\partial m/\partial \theta =0\) (Lee and Nelder 1996; Engel and Keen 1996; Ha et al. 2001).

In the semi-competing risks frailty models (5)–(7), the EM equations for \((\beta ,\alpha )\) are given by

$$\begin{aligned} E\left( \partial h/\partial (\beta ,\alpha ) \vert ~y_i^{o},{{\widetilde{\lambda }}}_{0jk_j}^{*} \right) =0. \end{aligned}$$

Here, the EM equations of the baseline hazards \(\lambda _{0jk_j}\) are given by

$$\begin{aligned} E(\partial h/\partial \lambda _{0jk_j} |~y_i^{o} )=0, \end{aligned}$$

which lead to

$$\begin{aligned} {\widetilde{\lambda }}_{0jk_j}^{*}(\beta ,v)=\frac{d_{j(k_j)}}{\sum _{~i \in R_{(k_j)}}\exp (x_i^T \beta _j) E(u_{i} |y_i^{o}) }. \end{aligned}$$

Following Ha et al. (2001), in the gamma frailty models, given \(\alpha \) the MHL equations for \(\beta \)

$$\begin{aligned} \partial h_{p}/\partial \beta =(\partial h/\partial \beta )|_{\lambda _0={\widehat{\lambda }}_0}=0{,} \end{aligned}$$

with (B.4) are equivalent to the EM equations

$$\begin{aligned} E(\partial h/\partial \beta \vert ~y_i^{o},{{\widetilde{\lambda }}}_{0jk_j}^{*} )=0{,} \end{aligned}$$

since \(E(u_{i} |y_i^{o})\) becomes \({\tilde{u}}_{i}\) in (A.5) and thus \({{\widetilde{\lambda }}}_{0jk_j}^{*}\) is identical to \({\tilde{\lambda }}_{0jk_j}\) in (A.5) as well as to \({\widehat{\lambda }}_{0jk_j}\). However, in general the EM may be difficult to apply because the conditional distribution of \(u_{i}\) given \(y_i^{o}\) is not trivial to be evaluated. For example, in the log-normal frailty with \(v_{i}=\log u_{i} \sim N(0, \alpha )\), the EM equation for \(\beta _1\) is given by

$$\begin{aligned} E\left( \partial h/\partial \beta _{1} \vert ~y_i^{o},{{\widetilde{\lambda }}}_{0jk_j}^{*}\right) = \sum _i \biggl \{ \delta _{i1}- {{\widetilde{\mu }}}_{i1}^{*} E(u_i|y_{i}^{o}) \biggl \} x_i =0, \end{aligned}$$

where

$$\begin{aligned} {\widetilde{\mu }}_{i1}^{*}={\widetilde{\Lambda }}_{01}^{*}(y_{i1})\exp (x_{i}^T \beta _1)=\sum _{k_1} {\widetilde{\lambda }}_{01k_1}^{*} I(y_{1(k_{1})} \le y_{i1}) \exp (x_i^T \beta _1). \end{aligned}$$

Note here that the computation of \( E(u_i|y_{i}^{o})\) requires a numerical integration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, I.D., Xiang, L., Peng, M. et al. Frailty modelling approaches for semi-competing risks data. Lifetime Data Anal 26, 109–133 (2020). https://doi.org/10.1007/s10985-019-09464-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-019-09464-2

Keywords

Navigation