Skip to main content

Advertisement

Log in

Templates for multifunctional landscape design

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

In climate-smart landscapes people manage land use for integrating sustainable production, climate change adaptation and mitigation. The spatial dimension of this multifunctionality remains to be formalised to increase effectiveness of nature-based solutions.

Objectives

We aimed to systematically analyse effects of fragmentation on multifunctionality and their interactions with land-use intensity responses.

Methods

We generated virtual landscapes to model interactions among six ecosystem services (ES) of different spatial sensitivities. We simulated land-use patterns on topographies from plains to mountains. Four land-use intensity treatments departed from hypothesised optimal composition for biodiversity and ES with > 30% intensive, < 30% extensive or protected and > 40% intermediate intensity use. For each composition we generated landscapes with differing fragmentation.

Results

Pixel- and landscape-level multifunctionality emerge from sensitivities of the six ES to landscape composition, fragmentation and their interactions. In heterogeneous landscapes of intermediate land-use intensity extensive grasslands and spatial complementarity supported multiple ES provision. Increasing land use intensity decreased multifunctionality by reducing all ES. However, greater fragmentation mitigated some of these effects because its benefits to nitrogen retention and pollination exceeded losses for recreation, especially in finer-grained landscapes. The five regulating ES were synergistic and showed trade-offs with recreation. Although interactions were most sensitive to intensity given its dominant effects on individual ES, fragmentation mediated interaction strength.

Conclusions

Virtual simulations allow a systematic understanding of how interactions between land-use intensity and fragmentation modulate multifunctionality. This constitutes an essential step to designing templates for climate smart-landscapes tailored to regional geographies, land-use allocation and ES priorities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arroyo-Rodríguez V, Fahrig L, Tabarelli M et al (2020) Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol Lett 23(9):1404–1420

    PubMed  Google Scholar 

  • Ausseil AGE, Dymond JR, Kirschbaum MUF, Andrew RM, Parfitt RL (2013) Assessment of multiple ecosystem services in New Zealand at the catchment scale. Environ Model Softw 43:37–48

    Google Scholar 

  • Bardgett RD, Bullock JM, Lavorel S et al (2021) Combatting global grassland degradation. Nature Reviews Earth & Environment 2(10):720–735

    Google Scholar 

  • Barnes R (2016a) Parallel Priority-Flood depression filling for trillion cell digital elevation models on desktops or clusters. Comput Geosci 96:56–68

    Google Scholar 

  • Barnes R (2016b) RichDEM: Terrain Analysis Software. 0.3.4 edn.

  • Barriuso Mediavilla A, Salas Tovar E, Del Bosque González I (2017) GIS model for potential soil erosion with the optimization of RUSLE equation. Case of study: olive oil PDO in Aragón and Andalucía Regions (Spain). CSIC,

  • Blüthgen N, Dormann CF, Prati D et al (2012) A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic Appl Ecol 13(3):207–220

    Google Scholar 

  • Bolton P, Bradbury PA, Lawrence P, Atkinson E (1995) CALSITE Version 3.1 Calibrated Simulation of Transported Erosion. User Manual. HR Wallingford Ltd., Wallingford UK

    Google Scholar 

  • Bowditch E, Santopuoli G, Binder F et al (2020) What is Climate-Smart Forestry? A definition from a multinational collaborative process focused on mountain regions of Europe. Ecosyst Serv 43:101113

    Google Scholar 

  • Burton V, Metzger MJ, Brown C, Moseley D (2019) Green Gold to Wild Woodlands; understanding stakeholder visions for woodland expansion in Scotland. Landscape Ecol 34(7):1693–1713

    Google Scholar 

  • Byczek C, Longaretti P-Y, Renaud J, Lavorel S (2018) Benefits of recreational community-based GPS information for modelling the recreation ecosystem service. PLoS ONE. https://doi.org/10.1371/journal.pone.0202645

    Article  PubMed  PubMed Central  Google Scholar 

  • Case B, Pannell J, Stanley M et al (2020) The roles of non-production vegetation in agroecosystems: A research framework for filling process knowledge gaps in a social-ecological context. People and Nature 2:292–304

    Google Scholar 

  • Case B, Ryan C (2020) An analysis of carbon stocks and net carbon position for New Zealand sheep and beef farmland. Auckland University of Technology,

  • Chausson A, Turner B, Seddon D et al (2020) Mapping the effectiveness of nature-based solutions for climate change adaptation. Glob Change Biol 11:6134–6155

    Google Scholar 

  • Cohen-Shacham E, Andrade A, Dalton J et al (2019) Core principles for successfully implementing and upscaling Nature-based Solutions. Environ Sci Policy 98:20–29

    Google Scholar 

  • Colloff MJ, Wise RM, Palomo I, Lavorel S, Pascual U (2020) Nature’s contribution to adaptation: insights from examples of transformation of social-ecological systems. Ecosystems and People 16:137–150

    Google Scholar 

  • Cordingley JE, Newton AC, Rose RJ, Clarke RT, Bullock JM (2015) Can landscape-scale approaches to conservation management resolve biodiversity–ecosystem service trade-offs? J App Ecol 53:96–105

    Google Scholar 

  • Dade MC, Mitchell MGE, McAlpine CA, Rhodes JR (2019) Assessing ecosystem service trade-offs and synergies: The need for a more mechanistic approach. Ambio 48(10):1116–1128

    PubMed  Google Scholar 

  • Davis M (2014) Nitrogen leaching losses from forests in New Zealand. NZ J Forest Sci 44(1):2

    Google Scholar 

  • Didham RK, Barker GM, Bartlam S et al (2015) Agricultural intensification exacerbates spillover effects on soil biogeochemistry in adjacent forest remnants. PLoS ONE 10(1):e0116474

    PubMed  PubMed Central  Google Scholar 

  • Duarte GT, Mitchell M, Martello F et al (2020) A user-inspired framework and tool for restoring multifunctional landscapes: putting into practice stakeholder and scientific knowledge of landscape services. Landscape Ecol 35(11):2535–2548

    Google Scholar 

  • Dymond JR (2010) Soil erosion in New Zealand is a net sink of CO2. Earth Surf. Process. Landforms 35(15):1763–1772

    CAS  Google Scholar 

  • Eden M (1961) A two-dimensional growth process. In: Neyman J. (ed), Proceedings of Fourth Berkeley Symposium on Mathematics, Statistics, and Probability. Vol. IV: Biology and Problems of Health. University of California Press Berkeley, pp. 223–239

  • Elliott A, Alexander R, Schwarz G, Shankar U, Sukias J, McBride G (2005) Estimation of Nutrient Sources and Transport for New Zealand Using the Hybrid Mechanistic-statistical Model SPARROW. New Zealand Hydrological Society

  • Ellis EC, Pascual U, Mertz O (2019) Ecosystem services and nature’s contribution to people: negotiating diverse values and trade-offs in land systems. Current Opinion in Environmental Sustainability 38:86–94

    Google Scholar 

  • Etherington TR (2016) Least-cost modelling and landscape ecology: concepts, applications, and opportunities. Current Landscape Ecology Reports 1(1):40–53

    Google Scholar 

  • Etherington TR, Holland EP, O’Sullivan D (2015) NLMpy: a Python software package for the creation of neutral landscape models within a general numerical framework. Methods Ecol Evol 6(2):164–168

    Google Scholar 

  • Fahrig L, Arroyo-Rodríguez V, Bennett JR et al (2019) Is habitat fragmentation bad for biodiversity? Biol Conserv 230:179–186

    Google Scholar 

  • Fedele G, Donatti CI, Harvey CA, Hannah L, Hole DG (2020) Limited use of transformative adaptation in response to social-ecological shifts driven by climate change. Ecol Soc. https://doi.org/10.5751/ES-11381-250125

    Article  Google Scholar 

  • Finch T, Day BH, Massimino D et al (2021) Evaluating spatially explicit sharing-sparing scenarios for multiple environmental outcomes. J Appl Ecol 58:655–666

    Google Scholar 

  • Fischer M, Rounsevell M, Rando AT-M et al (2018) The regional assessment report on biodiversity and ecosystem services for Europe and Central Asia: Summary for policymakers. IPBES secretariat

  • Fusco G, Melgiovanni M, Porrini D, Ricciardo TM (2020) How to improve the diffusion of climate-smart agriculture: what the literature tells us. Sustainability 12(12):5168

    Google Scholar 

  • Gardner RH, Urban DL (2007) Neutral models for testing landscape hypotheses. Landsc Ecol 22(1):15–29

    Google Scholar 

  • Gardner R, Milne BT, Turner MG, O’Neill RV (1987) Neutral models for the analysis of broad-scale landscape pattern. Landscape Ecol 1(1):19–28

    Google Scholar 

  • Garibaldi LA, Oddi FJ, Miguez FE et al (2021) Working landscapes need at least 20% native habitat. Conserv Lett 14(2):e12773

    Google Scholar 

  • GDAL/OGR contributors (2021) GDAL/OGR Geospatial Data Abstraction software Library. Open Source Geospatial Foundation, Available from https://gdal.org

  • Gosnell H, Gill N, Voyer M (2019) Transformational adaptation on the farm: Processes of change and persistence in transitions to ‘climate-smart’ regenerative agriculture. Glob Environ Chang 59:101965

    Google Scholar 

  • Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using NetworkX. In: Varoquaux G., Vaught T., Millman J. (eds) Proceedings of the 7th Annual Python in Science Conference, Pasadena 2008. p. 11–16

  • Hanspach J, Hartel T, Milcu AI et al (2014) A holistic approach to studying social-ecological systems and its application to southern Transylvania. Ecol Soc. https://doi.org/10.5751/ES-06915-190432

    Article  Google Scholar 

  • Harris CR, Millman KJ, van der Walt SJ et al (2020) Array programming with NumPy. Nature 585(7825):357–362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey CA, Chacón M, Donatti CI et al (2014) Climate-smart landscapes: opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conserv Lett 7(2):77–90

    Google Scholar 

  • Heeb L, Jenner E, Cock MJW (2019) Climate-smart pest management: building resilience of farms and landscapes to changing pest threats. J Pest Sci 92(3):951–969

    Google Scholar 

  • Hertzog LR, Boonyarittichaikij R, Dekeukeleire D et al (2019) Forest fragmentation modulates effects of tree species richness and composition on ecosystem multifunctionality. Ecology 100(4):e02653

    PubMed  Google Scholar 

  • Hesselbarth MHK, Sciaini M, With KA, Wiegand K, Nowosad J (2019) landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42(10):1648–1657

    Google Scholar 

  • Hijmans RJ (2021) CRAN—Package Raster. https://cran.r-project.org/web/packages/raster/index.html

  • Hölting L, Beckmann M, Volk M, Cord AF (2019) Multifunctionality assessments—More than assessing multiple ecosystem functions and services? A quantitative literature review. Ecol Ind 103:226–235

    Google Scholar 

  • Horn BKP (1981) Hill shading and the reflectance map. Proc IEEE 69(1):14–47

    Google Scholar 

  • Jeanneret P, Aviron S, Alignier A et al (2021) Agroecology landscapes. Landscape Ecol 36(8):2235–2257

    Google Scholar 

  • Jones KB, Zurlini G, Kienast F et al (2013) Informing landscape planning and design for sustaining ecosystem services from existing spatial patterns and knowledge. Landscape Ecol 28(6):1175–1192

    Google Scholar 

  • Kimberley A, Hooftman D, Bullock JM et al (2021) Functional rather than structural connectivity explains grassland plant diversity patterns following landscape scale habitat loss. Landsc Ecol 36(1):265–280

    Google Scholar 

  • Lamarque P, Lavorel S, Mouchet M, Quétier F (2014) Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services. Proc Natl Acad Sci 111:13751–13756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamy T, Liss KN, Gonzalez A, Bennett EM (2016) Landscape structure affects the provision of multiple ecosystem services. Environ Res Lett 11(12):124017

    Google Scholar 

  • Langhammer M, Thober J, Lange M, Frank K, Grimm V (2019) Agricultural landscape generators for simulation models: a review of existing solutions and an outline of future directions. Ecol Model 393:135–151

    Google Scholar 

  • Gillies et al. (2013) See https://github.com/mapbox/rasterio/issues/654

  • Lavorel S, Colloff M, McIntyre S et al (2015) Ecological mechanisms underpinning climate adaptation services. Glob Change Biol 21:12–31

    Google Scholar 

  • Lavorel S, Bayer A, Bondeau A et al (2017a) Pathways to bridge the biophysical realism gap in ecosystem services mapping approaches. Ecol Ind 74:241–260

    Google Scholar 

  • Lavorel S, Grigulis K, Leitinger G, Schirpke U, Kohler M, Tappeiner U (2017b) Historical trajectories in land use pattern and grassland ecosystem services in two contrasted alpine landscapes. Reg Environ Change 17:2251–2264

    PubMed  PubMed Central  Google Scholar 

  • Lavorel S, Locatelli B, Colloff MC, Bruley E (2020) Co-producing ecosystem services for adapting to climate change. Philos Trans R Soc B 375(1794):20190119

    Google Scholar 

  • Ledgard G (2014) An inventory of nitrogen and phosphorous losses from rural land uses in the Southland region. Environment Southland,

  • Levers C, Müller D, Erb K et al (2016) Archetypical patterns and trajectories of land systems in Europe. Reg Environ Change 18:715–732

    Google Scholar 

  • Lilburne L, Eger A, Mudge P et al (2020) The Land Resource Circle: Supporting land-use decision making with an ecosystem-service-based framework of soil functions. Geoderma 363:114134

    Google Scholar 

  • MacLeod CJ, Moller H (2006) Intensification and diversification of New Zealand agriculture since 1960: An evaluation of current indicators of land use change. Agr Ecosyst Environ 115(1):201–218

    Google Scholar 

  • Maes J, Egoh B, Willemen L et al (2012) Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst Serv 1(1):31–39

    Google Scholar 

  • Manaaki Whenua Landcare Research (MWLR) (2020) LCDB v5.0—Land Cover Database version 5.0, Mainland New Zealand.

  • Martínez-Sastre R, Ravera F, González JA, López Santiago C, Bidegain I, Munda G (2017) Mediterranean landscapes under change: Combining social multicriteria evaluation and the ecosystem services framework for land use planning. Land Use Policy 67:472–486

    Google Scholar 

  • Mason N, Carswell F, Overton J, Briggs CM, Hall G (2012) Estimation of current and potential carbon stocks and Kyoto-compliant carbon gain on conservation land. Science for Conservation 317

  • Mastrangelo ME, Weyland F, Villarino SH, Barral MP, Nahuelhual L, Laterra P (2014) Concepts and methods for landscape multifunctionality and a unifying framework based on ecosystem services. Landscape Ecol 29(2):345–358

    Google Scholar 

  • McIntyre S, McIvor J, MacLeod N (2000) Principles for sustainable grazing in eucalypt woodlands: landscape-scale indicators and the search for thresholds. In: Hale P., Petrie A., Moloney D., Sattler P. (eds) Management for Sustainable Ecosystems. Centre for Conservation Biology, the University of Queensland, Brisbane Australia

  • McIntyre S, Lavorel S (2007) A conceptual model of land use effects on the structure and function of herbaceous vegetation. Agr Ecosyst Environ 119:11–21

    Google Scholar 

  • Meyfroidt P, Roy Chowdhury R, de Bremond A et al (2018) Middle-range theories of land system change. Glob Environ Chang 53:52–67

    Google Scholar 

  • Mitchell MGE, Bennett EM, Gonzalez A et al (2015a) The Montérégie Connection: linking landscapes, biodiversity, and ecosystem services to improve decision making. Ecol Soc. https://doi.org/10.5751/ES-07927-200415

    Article  Google Scholar 

  • Mitchell MGE, Suarez-Castro AF, Martinez-Harms M et al (2015b) Reframing landscape fragmentation’s effects on ecosystem services. Trends Ecol Evol 30(4):190–198

    PubMed  Google Scholar 

  • Mölder F, Jablonski KP, Letcher B et al (2021) Sustainable data analysis with Snakemake. F100Res 10:33

    Google Scholar 

  • Musgrave FK, Kolb CE, Mace RS (1989) The synthesis and rendering of eroded fractal terrains. ACM SIGGRAPH Computer Graphics 23(3):41–50

    Google Scholar 

  • Neteler M (2021) GRASS GIS https://grass.osgeo.org/

  • O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Computer Vision, Graphics, and Image Processing 28(3):323–344

    Google Scholar 

  • Pärn J, Pinay G, Mander Ü (2012) Indicators of nutrients transport from agricultural catchments under temperate climate: A review. Ecol Indic 22:4–15

    Google Scholar 

  • Pateiro-Lopez B, Rodriguez-Casal A (2019) alphahull: Generalization of the Convex Hull of a Sample of Points in the Plane., R package version 2.2. https://CRAN.R-project.org/package=alphahull.

  • Perry M (2021) https://pythonhosted.org/rasterstats/index.html

  • Plas F, Allan E, Fischer M et al (2019) Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships. J Appl Ecol 56:168–179

    Google Scholar 

  • Plotnick RE, Gardner RG (2002) A general model for simulating the effects of landscape heterogeneity and disturbance on community patterns. Ecol Model 147:171–187

    Google Scholar 

  • Prestele R, Verburg PH (2020) The overlooked spatial dimension of climate-smart agriculture. Glob Change Biol 26:1045–1054

    Google Scholar 

  • The Pandas Development Team (2021) pandas-dev/pandas: Pandas 1.3.0 (Version v1.3.0). Zenodo. https://doi.org/10.5281/zenodo.5060318

  • Qiu J (2019) Effects of landscape pattern on pollination, pest control, water quality, flood regulation, and cultural ecosystem services: a literature review and future research prospects. Curr Land Ecol Rep 4(4):113–124

    Google Scholar 

  • Qiu J, Carpenter SR, Booth EG et al (2018) Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape. Ecol Appl 28(1):119–134

    PubMed  Google Scholar 

  • Qiu J, Queiroz C, Bennett EM et al (2021) Land-use intensity mediates ecosystem service tradeoffs across regional social-ecological systems. Ecosys People 17:264–278

    Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Austria

    Google Scholar 

  • Richards DR, Moggridge HL, Maltby L, Warren PH (2018) Impacts of habitat heterogeneity on the provision of multiple ecosystem services in a temperate floodplain. Basic Appl Ecol 29:32–43

    Google Scholar 

  • Richards DR, Lavorel S Integrating social media data and machine learning to simulate landscape appreciation. Ecosystem Services in review

  • Rieb JT, Bennett EM (2020) Landscape structure as a mediator of ecosystem service interactions. Landscape Ecol 35(12):2863–2880

    Google Scholar 

  • Sarker MNI, Wu M, Alam GMM, Islam MS (2019) Role of climate smart agriculture in promoting sustainable agriculture: a systematic literature review. Int J Agric Resour Gov Ecol 15(4):323–337

    Google Scholar 

  • Scherr SJ, Shames S, Friedman R (2012) From climate-smart agriculture to climate-smart landscapes. Agriculture & Food Security 1(1):12

    Google Scholar 

  • Schippers P, van der Heide CM, Koelewijn HP et al (2015) Landscape diversity enhances the resilience of populations, ecosystems and local economy in rural areas. Landscape Ecol 30(2):193–202

    Google Scholar 

  • Schirpke U, Tscholl S, Tasser E (2020) Spatio-temporal changes in ecosystem service values: effects of land-use changes from past to future (1860–2100). J Environ Manag 272:111068

    Google Scholar 

  • Schulp CJE, Burkhard B, Maes J, Van Vliet J, Verburg PH (2014a) Uncertainties in ecosystem service maps: a comparison on the european scale. PLoS ONE 9(10):e109643

    PubMed  PubMed Central  Google Scholar 

  • Schulp CJE, Lautenbach S, Verburg PH (2014b) Quantifying and mapping ecosystem services: Demand and supply of pollination in the European Union. Ecol Ind 36:131–141

    Google Scholar 

  • Seddon N, Chausson A, Berry P, Girardin CAJ, Smith A, Turner B (2020) Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philosophical Transactions of the Royal Society B: Biological Sciences 375(1794):20190120

    Google Scholar 

  • Seppelt R, Lautenbach S, Volk M (2013) Identifying trade-offs between ecosystem services, land use, and biodiversity: a plea for combining scenario analysis and optimization on different spatial scales. Current Opinion in Environmental Sustainability 5(5):458–463

    Google Scholar 

  • Seppelt R, Beckmann M, Ceauşu S et al (2016) Harmonizing biodiversity conservation and productivity in the context of increasing demands on landscapes. Bioscience 66:890–896

    PubMed  PubMed Central  Google Scholar 

  • Sharp R, Douglass J, Wolny S et al (2020) InVEST 3.8. 9. post13+ ug. ga74679f User’s Guide. The Natural Capital Project. Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund

  • Sirami C, Gross N, Baillod AB et al (2019) Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc Natl Acad Sci 116(33):16442–16447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smelik RM, Tutenel T, Bidarra R, Benes B (2014) A Survey on Procedural Modelling for Virtual Worlds 33(6):31–50

    Google Scholar 

  • Smith FP, Prober SM, House APN, McIntyre S (2013) Maximizing retention of native biodiversity in Australian agricultural landscapes - the 10:20:40:30 guidelines. Agr Ecosyst Environ 16:35–45

    Google Scholar 

  • Spake R, Lasseur R, Crouzat E et al (2017) Unpacking ecosystem service bundles: towards predictive mapping of synergies and trade-offs between ecosystem services. Glob Environ Chang 47:37–50

    Google Scholar 

  • Spake R, Bellamy C, Graham LJ et al (2019) An analytical framework for spatially targeted management of natural capital. Nature Sustainability 2(2):90–97

    Google Scholar 

  • Stürck J, Verburg PH (2017) Multifunctionality at what scale? A landscape multifunctionality assessment for the European Union under conditions of land use change. Landscape Ecol 32:481–500

    Google Scholar 

  • Sutherland IJ, Gergel SE, Bennett EM (2016) Seeing the forest for its multiple ecosystem services: Indicators for cultural services in heterogeneous forests. Ecol Ind 71:123–133

    Google Scholar 

  • Thomas A, Masante D, Jackson B, Cosby B, Emmett B, Jones L (2020) Fragmentation and thresholds in hydrological flow-based ecosystem services. Ecol Appl 30(2):e02046

    PubMed  PubMed Central  Google Scholar 

  • Thomas S, Ausseil A-G, Guo J et al (2021) Evaluation of profitability and future potential for low emission productive uses of land that is currently used for livestock. SLMACC Project 405422. Discussion/Technical/Information—Paper No: 2020. New Zealand Minsitry of Primary Industries,

  • Tscharntke T, Tylianakis JM, Rand TA et al (2012) Landscape moderation of biodiversity patterns and processes - eight hypotheses. Biol Rev 87(3):661–685

    PubMed  Google Scholar 

  • Tscharntke T, Grass I, Wanger TC, Westphal C, Batáry P (2021) Beyond organic farming—harnessing biodiversity-friendly landscapes. Trends Ecol Evol 36(10):919–930

    PubMed  Google Scholar 

  • Turkelboom F, Leone M, Jacobs S et al (2018) When we cannot have it all: Ecosystem services trade-offs in the context of spatial planning. Ecosyst Serv 29:566–578

    Google Scholar 

  • Valdés A, Lenoir J, De Frenne P et al (2020) High ecosystem service delivery potential of small woodlands in agricultural. Landscapes 57(1):4–16

    Google Scholar 

  • Vallet A, Locatelli B, Levrel H et al (2018) Relationships between ecosystem services: comparing methods for assessing tradeoffs and synergies. Ecol Econ 150:96–106

    Google Scholar 

  • van der Walt S, Schönberger JL, Nunez-Iglesias J et al (2014) Scikit-image: image processing in Python. PeerJ 2:e453

    PubMed  PubMed Central  Google Scholar 

  • van Strien MJ, Slager CTJ, de Vries B, Grêt-Regamey A (2016) An Improved Neutral Landscape Model for Recreating Real Landscapes and Generating Landscape Series for Spatial Ecological Simulations 6(11):3808–3821

    Google Scholar 

  • Venables W, Ripley B (2002) Modern Applied Statistics with S. Springer, New York

    Google Scholar 

  • Verburg PH, Soepboer W, Veldkamp A, Limpiada R, Espaldon V, Mastura SSA (2002) Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model. Environ Manage 30(3):391–405

    PubMed  Google Scholar 

  • Verburg PH, Schulp CJE, Witte N, Veldkamp A (2006) Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agr Ecosyst Environ 114(1):39–56

    Google Scholar 

  • Verhagen W, Van Teeffelen AJA, Baggio Compagnucci A, Poggio L, Gimona A, Verburg PH (2016) Effects of landscape configuration on mapping ecosystem service capacity: a review of evidence and a case study in Scotland. Landscape Ecol 41:1457–1479

    Google Scholar 

  • Verkerk PJ, Lindner M, Pérez-Soba M et al (2018) Identifying pathways to visions of future land use in Europe. Reg Environ Change 18:817–830

    Google Scholar 

  • Virtanen P, Gommers R, Oliphant TE et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17(3):261–272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wartmann FM, Stride CB, Kienast F, Hunziker M (2021) Relating landscape ecological metrics with public survey data on perceived landscape quality and place attachment. Landscape Ecol 36(8):2367–2393

    Google Scholar 

  • Wickham H et al. (2021) https://dplyr.tidyverse.org/index.html

  • Wilkins D., Rudis B. (2021) Package treemapify: draw treemaps in ggplot2. Version 2.5.5, https://cran.r-project.org/web/packages/treemapify/

  • With KA (1997) The application of neutral landscape models in conservation biology. Conserv Biol 11:1069–1080

    Google Scholar 

  • With KA (2016) Are landscapes more than the sum of their patches? Landsc Ecol 31(5):969–980

    Google Scholar 

  • With KA (2019) Essentials of Landscape Ecology. Oxford University Press

    Google Scholar 

  • Wu J (2021) Landscape sustainability science (II): core questions and key approaches. Landscape Ecol 36:2453–2485

    Google Scholar 

  • Ziter C, Bennett EM, Gonzalez A (2014) Temperate forest fragments maintain aboveground carbon stocks out to the forest edge despite changes in community composition. Oecologia 176(3):893–902

    PubMed  Google Scholar 

  • Ziter C, Graves RA, Turner MG (2017) How do land-use legacies affect ecosystem services in United States cultural landscapes? Landscape Ecol 32(11):2205–2218

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Science Investment Funding for Crown Research Institutes from the New Zealand Ministry of Business, Innovation and Employment's Science and Innovation Group. Sandra Lavorel dedicates this work to Robert H. Gardner for a life-long inspiration to seek generality in landscape processes. We thank Bruno Locatelli for generous insights into trade-off analyses and graphic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Lavorel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3870 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavorel, S., Grigulis, K., Richards, D.R. et al. Templates for multifunctional landscape design. Landsc Ecol 37, 913–934 (2022). https://doi.org/10.1007/s10980-021-01377-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-021-01377-6

Keywords

Navigation