Skip to main content
Log in

Threshold and weighted-distance methods: a combined multiscale approach improves explanatory power of forest carabid beetle abundance in agricultural landscape

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

To analyze the scales at which landscape structure influences ecological processes, two approaches with different underlying ecological assumptions exist; the usual threshold method and the weighted-distance method.

Objectives

We used abundance of species to test if the combination of weighted-distance and threshold approaches improves the explained variance of landscape metrics.

Methods

We developed a workflow using the two approaches to calculate metrics computed at multiple scales. The latter was developed using weighted metrics based on different weighted-distance functions, and one metric could be selected for more than one spatial scale. Then, we tested the explained variance of species distribution (the activity-density of Abax parallelepipedus) by these two approaches applied independently and then together in modeling a specific ecological response.

Results

The combination of metrics computed at multiple scales calculated by both weighted-distance and threshold method improved the predictive performance of the models. More precisely, adding metrics derived from the weighted-distance method to the threshold method significantly increased the explained variance when using the same environmental variables. The mean R2 values of the selected model for the threshold method was 0.34 ± 0.10, 0.49 ± 0.11 with the weighted-distance method, and reached 0.71 ± 0.07 with the two methods combined. These results demonstrate the importance of combining metrics using the weighted-distance method and the threshold method. In addition, activity-density was better explained by metrics selected at multiple scales.

Conclusions

This study highlights the importance of combining threshold and weighted-distance method at several scales to improve the explanation of ecological responses based on species abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aviron S, Lalechère E, Duflot R, Parisey N, Poggi S (2018) Connectivity of cropped vs. semi-natural habitats mediates biodiversity: a case study of carabid beetles communities. Agric Ecosyst Environ 268:34–43.

    Article  Google Scholar 

  • Baguette M (2003) Long distance dispersal and landscape occupancy in a metapopulation of the cranberry fritillary butterfly. Ecography 26:153–160.

    Article  Google Scholar 

  • Batary P, Baldi A, Kleijn D, Tscharntke T (2011) Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proc R Soc B Biol Sci 278:1894–1902.

    Article  Google Scholar 

  • Baudry J, Burel F (2019) Multi-scale control of carabid assemblages in hedgerow network landscapes. In: The ecology of hedgerows and field margins. Routledge, New York, pp 147–162

  • Baudry J, Bunce RGH, Burel F (2000) Hedgerow diversity: an international perspective on their origin, function and management. J Environ Manag 60:7–22.

    Article  Google Scholar 

  • Bertrand C, Burel F, Baudry J (2016) Spatial and temporal heterogeneity of the crop mosaic influences carabid beetles in agricultural landscapes. Landsc Ecol 31:451–466.

    Article  Google Scholar 

  • Betbeder J, Hubert-Moy L, Burel F, Corgne S, Baudry J (2015) Assessing ecological habitat structure from local to landscape scales using synthetic aperture radar. Ecol Indic 52:545–557.

    Article  Google Scholar 

  • Boots B (2003) Developing local measures of spatial association for categorical data. J Geograph Syst 5:139–160.

    Article  Google Scholar 

  • Burel F (1989) Landscape structure effects on carabid beetles spatial patterns in western France. Landsc Ecol 2:215–226

    Article  Google Scholar 

  • Burel F, Baudry J (2003) Landscape ecology: concepts, methods, and applications. Science Publishers, Enfield

    Book  Google Scholar 

  • Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35.

    Article  Google Scholar 

  • Chandler R, Hepinstall-Cymerman J (2016) Estimating the spatial scales of landscape effects on abundance. Landsc Ecol 31:1383–1394.

    Article  Google Scholar 

  • Charrier S (1997) Movements of Abax parallelepipedus (Coleoptera, Carabidae) in woody habitats of a hedgerow network landscape: a radio-tracing study. Agric Ecosyst Environ 61:133–144.

    Article  Google Scholar 

  • Charrier S, Petit S, Burel F (1997) Movements of Abax parallelepipedus (Coleoptera, Carabidae) in woody habitats of a hedgerow network landscape: a radio-tracing study. Agric Ecosyst Environ 61:133–144.

    Article  Google Scholar 

  • Coulon J, Pupier R, Quéinnec E, Ollivier E, Richoux P (2011) Coléoptères carabiques: faune de France. Faune De France, Paris

    Google Scholar 

  • Csillag F, Boots B (2005) Toward comparing maps as spatial processes. In: Fisher PF (ed) Developments in spatial data handling. Springer, Berlin, pp 641–652

    Chapter  Google Scholar 

  • Cushman SA, Mc Garigal K, Neel MC (2008) Parsimony in landscape metrics: Strength, universality, and consistency. Ecol Indic 8:691–703.

    Article  Google Scholar 

  • da Silva PM, Aguiar CAS, Niemelä J, Sousa JP, Serrano ARM (2008) Diversity patterns of ground-beetles (Coleoptera: Carabidae) along a gradient of land-use disturbance. Agric Ecosyst Environ 124:270–274.

    Article  Google Scholar 

  • Davies AB, Asner GP (2014) Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends Ecol Evol 29:681–691.

    Article  PubMed  Google Scholar 

  • Davies ZG, Pullin AS (2007) Are hedgerows effective corridors between fragments of woodland habitat? An evidence-based approach. Landsc Ecol 22:333–351.

    Article  Google Scholar 

  • Desrochers A, Renaud C, Hochachka WM, Cadman M (2010) Area-sensitivity by forest songbirds: theoretical and practical implications of scale-dependency. Ecography 33:921–931.

    Article  Google Scholar 

  • Duflot R, Georges R, Ernoult A, Aviron S, Farhig L, Burel F (2014) Landscape heterogeneity as an ecological filter of species traits. Acta Oecologica 56:19–26.

    Article  Google Scholar 

  • Egerer M, Li K, Ong TWY (2018) Context matters: contrasting ladybird beetle responses to urban environments across two US regions. Sustainability 10:1–17

    Article  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel F, Crist TO (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112.

    Article  PubMed  Google Scholar 

  • Forman RTT, Baudry J (1984) Hedgerows and hedgerow networks in landscape ecology. Environ Manage 8:495–510.

    Article  Google Scholar 

  • Fortin MJ, Boots B, Csillag F, Remmel TK (2003) On the role of spatial stochastic models in understanding landscape indices in ecology. Oikos 102:203–212.

    Article  Google Scholar 

  • Fournier E, Loreau M (1999) Effects of newly planted hedges on ground-beetle diversity (Coleoptera, Carabidae) in an agricultural landscape. Ecography 22:87–97.

    Article  Google Scholar 

  • Fournier E, Loreau M (2002) Foraging activity of the carabid beetle Pterostichus melanarius Ill. In field margin habitats. Agric Ecosyst Environ 89:253–259.

    Article  Google Scholar 

  • Fric Z, Konvicka M (2007) Dispersal kernels of butterflies: power-law functions are invariant to marking frequency. Basic Appl Ecol 8:377–386.

    Article  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67.

    Article  Google Scholar 

  • Friedman JH, Hastie T, Tibshirani R (1990) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1–22

    Google Scholar 

  • Gaucherel C, Burel F, Baudry J (2007) Multiscale and surface pattern analysis of the effect of landscape pattern on carabid beetles distribution. Ecol Indic 7:598–609.

    Article  Google Scholar 

  • Greenwell BM (2017) pdp: an R package for constructing partial dependence plots. R J 9:421–436

    Article  Google Scholar 

  • Hargis CD, Bissonette JA, David JL (1998) The behavior of landscape metrics commonly used in the study of habitat fragmentation. Landsc Ecol 13:167–186.

    Article  Google Scholar 

  • Hill JK, Thomas CD, Lewis OT (1996) Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: Implications for metapopulation structure. J Anim Ecol 65:725–735.

    Article  Google Scholar 

  • Jackson HB, Fahrig L (2015) Are ecologists conducting research at the optimal scale? Glob Ecol Biogeogr 24:52–63.

    Article  Google Scholar 

  • Kennedy CM, Lonsdorf E, Neel MC, Williams NM, Ricketts TH, Winfree R, Bommarco R, Brittain C, Burley AL, Cariveau D, Carvalheiro LG (2013) A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett 16:584–599.

    Article  PubMed  Google Scholar 

  • Loreau M (1985) Annual activity and life cycles of carabid beetles in two forest communities. Ecography 8:228–235.

    Article  Google Scholar 

  • Loreau M (1990) Competition in a carabid beetle community: a field experiment. Oikos 58:25–38.

    Article  Google Scholar 

  • Loreau M, Nolf CL (1993) Occupation of space by the carabid beetle Abax ater. Acta Oecologica 14:247–258

    Google Scholar 

  • Luff ML (1975) Some features influencing the efficiency of pitfall traps. Oecologia 19:345–357.

    Article  CAS  PubMed  Google Scholar 

  • Magura T (2000) Effects of nature management practice on carabid assemblages (Coleoptera: Carabidae) in a non-native plantation. Biol Conserv 8

  • Marcus T, Boch S, Durka W, Fischer M, Gossner MM, Müller J, Schöning I, Weisser WW, Drees C, Assmann T (2015) Living in heterogeneous woodlands—are habitat continuity or quality drivers of genetic variability in a flightless ground beetle? PLoS ONE. https://doi.org/10.1371/journal.pone.0144217

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin AE, Fahrig L (2012) Measuring and selecting scales of effect for landscape predictors in species-habitat models. Ecol Appl 22:2277–2292.

    Article  PubMed  Google Scholar 

  • Mayor SJ, Schneider DC, Schaefer JA, Mahoney SP (2009) Habitat Selection at Multiple Scales Écoscience 16:238–247.

    Article  Google Scholar 

  • McGarigal K, Wan HY, Zeller KA, Timm BC, Cushman SA (2016) Multi-scale habitat selection modeling: a review and outlook. Landsc Ecol 31:1161–1175.

    Article  Google Scholar 

  • Miguet P, Jackson HB, Jackson ND, Martin AE, Farhig L (2016) What determines the spatial extent of landscape effects on species? Landsc Ecol 31:1177–1194.

    Article  Google Scholar 

  • Miguet P, Fahrig L, Lavigne C (2017) How to quantify a distance-dependent landscape effect on a biological response. Methods Ecol Evol 8:1717–1724.

    Article  Google Scholar 

  • Milborrow S (2011) Derived from mda:mars by T. Hastie and R. Tibshirani. earth: Multivariate Adaptive Regression Splines. R Package

  • Müller J, Bae S, Röder J, Didham RK (2014) Airborne LiDAR reveals context dependence in the effects of canopy architecture on arthropod diversity. For Ecol Manag 312:129–137.

    Article  Google Scholar 

  • Niemelä J (2001) Carabid beetles (Coleoptera: Carabidae) and habitat fragmentation: a review. Eur J Entomol 98:127–132.

  • Niemelä J, Haila Y, Halme E, Pajunen T, Punttila P (1992) Small-scale heterogeneity in the spatial distribution of Carabid beetles in the Southern Finnish Taiga. J Biogeogr 19:173–181.

    Article  Google Scholar 

  • Ostapowicz K, Vogt P, Riitters KH, Kozak J, Estreguil C (2008) Impact of scale on morphological spatial pattern of forest. Landsc Ecol 23:1107–1117.

    Article  Google Scholar 

  • Peterson EE, Sheldon F, Darnell R, Bunn SE, Harch BD (2011) A comparison of spatially explicit landscape representation methods and their relationship to stream condition. Freshw Biol 56:590–610.

    Article  Google Scholar 

  • Petit S, Burel F (1998a) Effects of landscape dynamics on the metapopulation of a ground beetle (Coleoptera, Carabidae) in a hedgerow network. Agric Ecosyst Environ 69:243–252.

    Article  Google Scholar 

  • Petit S, Burel F (1998b) Connectivity in fragmented populations: Abax parallelepipedus in a hedgerow network landscape. Comptes Rendus Académie Sci 321:55–61.

    Article  Google Scholar 

  • Pichancourt JB, Burel F, Auger P (2006) Assessing the effect of habitat fragmentation on population dynamics: an implicit modelling approach. Ecol Model 192:543–556.

    Article  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Remmel TK, Csillag F (2003) When are two landscape pattern indices significantly different? J Geogr Syst 5:331–351.

    Article  Google Scholar 

  • Remon J, Chevallier E, Prunier JG, Prunier JG, Baguette M, Moulherat S (2018) Estimating the permeability of linear infrastructures using recapture data. Landsc Ecol 33:1697–1710.

    Article  Google Scholar 

  • Retho B, Gaucherel C, Inchausti P (2008) Modeling spatially explicit population dynamics of Pterostichus melanarius I11. (Coleoptera: Carabidae) in response to changes in the composition and configuration of agricultural landscapes. Landsc Urban Plan 84:191–199.

    Article  Google Scholar 

  • Roume A, Deconchat M, Raison L, Balent G, Ouin A (2011) Edge effects on ground beetles at the woodlot-field interface are short-range and asymmetrical. Agric for Entomol 13:395–403

    Article  Google Scholar 

  • Serckx A, Huynen M-C, Beudels-Jamar RC, Vimond M, Bogaert J, Kühl HS (2016) Bonobo nest site selection and the importance of predictor scales in primate ecology. Am J Primatol 78:1326–1343.

    Article  PubMed  Google Scholar 

  • Shackelford G, Steward PR, Benton TG, Kunin WE, Potts SG, Biesmeijer JC, Sait SM (2013) Comparison of pollinators and natural enemies: a meta-analysis of landscape and local effects on abundance and richness in crops: comparison of pollinators and natural enemies. Biol Rev 88:1002–1021.

    Article  PubMed  Google Scholar 

  • Spence JR, Niemelä J (1994) Sampling carabid assemblages with pitfall traps: the madness and the method. Can Entomol 126:881–894

    Article  Google Scholar 

  • Stevens VM, Turlure C, Baguette M (2010) A meta-analysis of dispersal in butterflies. Biol Rev 85:625–642.

    Article  PubMed  Google Scholar 

  • Stuber EF, Gruber LF (2020) Recent methodological solutions to identifying scales of effect in multi-scale modeling. Curr Landsc Ecol Rep.

    Article  Google Scholar 

  • Stuber EF, Gruber FL, Fontaine JJ (2018) Predicting species-habitat relationships: does body size matter? Landsc Ecol 33:1049–1060.

    Article  Google Scholar 

  • Symondson WOC (1994) The potential of Abax parallelepipedus (Col.: Carabidae) for mass breeding as a biological control agent against slugs. Entomophaga 39:323–333.

    Article  Google Scholar 

  • Symondson WOC, Liddell JE (1993) The detection of predation by Abax parallelepipedus and Pterostichus madidus (Coleoptera: Carabidae) on Mollusca using a quantitative Elisa. Bull Entomol Res 83:641–647.

    Article  Google Scholar 

  • Thomas CFG, Parkinson L, Marshall EJP (1998) Isolating the components of activity-density for the carabid beetle Pterostichus melanarius in farmland. Oecologia 116:103–112.

    Article  CAS  PubMed  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc B 58:267–288

    Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685.

    Article  PubMed  Google Scholar 

  • Turner MG (2005) Landscape ecology: what is the state of science? Annu Rev Ecol Evol Syst 36:319–344.

    Article  Google Scholar 

  • Vannier C, Vasseur C, Hubert-Moy L, Baudry J (2011) Multiscale ecological assessment of remote sensing images. Landsc Ecol 26:1053–1069.

    Article  Google Scholar 

  • Vasseur C, Joannon A, Aviron S, Burel F, Meynard JM, Baudry J (2013) The cropping systems mosaic: how does the hidden heterogeneity of agricultural landscapes drive arthropod populations? Agric Ecosyst Environ 166:3–14.

    Article  Google Scholar 

  • Vermeulen HJW (1993) The composition of the carabid fauna on poor sandy road-side verges in relation to comparable open areas. Biodivers Conserv 2:331–350.

    Article  Google Scholar 

  • Vermeulen HJW (1994) Corridor function of a road verge for dispersal of stenotopic heathland ground beetles carabidae. Biol Conserv 69:339–349.

    Article  Google Scholar 

  • Work T, Onge BS, Jacobs J (2011) Response of female beetles to LIDAR derived topographic variables in Eastern boreal mixedwood forests (Coleoptera, Carabidae). ZooKeys 147:623–639.

    Article  Google Scholar 

  • Wu J (2004) Effects of changing scale on landscape pattern analysis: scaling relations. Landsc Ecol 19:125–138.

    Article  Google Scholar 

Download references

Acknowledgements

This study has been supported by the Woodnet project, funded through the 2015–2016 BiodivERsA COFUND call for research proposals, with the national funders ANR (Agence National de la Recherche, France), MINECO (Ministerio de Asuntos Económicos y Transformación Digital, Spain) and BELSPO (Politique scientifique fédérale, Belgium). We were very grateful to Valentin Yamani and Alexane Broussin who kindly collected carabid species. We also thank the farmers for allowing us to sample their hedgerows. We thank LETG-Rennes UMR 6554 CNRS for providing land cover data of the Zone Atelier Armorique (ZAAr). We thank the French LTER (Long Term Ecologial Research) ZAAr for facilitating all research in this area. We also thank the three anonymous reviewers for their comments, which contributed greatly to the improvement of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Bergerot.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 2868 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergerot, B., Lemasle, PG., Boussard, H. et al. Threshold and weighted-distance methods: a combined multiscale approach improves explanatory power of forest carabid beetle abundance in agricultural landscape. Landsc Ecol 37, 159–174 (2022). https://doi.org/10.1007/s10980-021-01338-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-021-01338-z

Keywords

Navigation