Skip to main content

Advertisement

Log in

Spatially explicit correlates of plant functional traits inform landscape patterns of resource quality

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Spatially explicit correlates of foliar elemental, stoichiometric, and phytochemical (ESP) traits represent links to landscape patterns of resource quality.

Objectives

We investigate spatial correlates for multiple foliar ESP traits at the species level and across species at the trait level for five boreal forest understory plants.

Methods

On the island of Newfoundland, Canada, we collected plot-level foliar material from four chronosequenced forest grids. We integrate plot-level response variables of foliar elemental (C, N, P, percent and quantity), stoichiometric (C:N, C:P, N:P), and phytochemical (terpenoids) traits, with spatial predictors available for the whole landscape to test multiple competing hypotheses. These hypotheses include the effects of land cover (e.g., coniferous, deciduous, mixedwood), productivity (e.g., enhanced vegetation index), biotic (e.g., stand age/height, canopy closure) and abiotic (e.g., elevation, aspect, slope) factors.

Results

Spatial correlates of foliar ESP traits were generally species specific. However, at the trait level, some species shared spatial predictors, notably for foliar percent carbon, C:P, N:P, sesquiterpene traits. Here we highlight that foliar C, C:P, and sesquiterpene traits between different species were explained by abiotic spatial correlates alone. Similarly, foliar terpenoid traits between different species were related to a combination of abiotic and biotic factors (mean R2 = 0.26).

Conclusions

Spatial-trait relationships mainly occur at the species level, with some commonalities at the trait level. By linking plot-level foliar ESP traits to spatial predictors, we can map plant chemical composition patterns that influence landscape-scale ecosystem processes and thus inform sustainable landscape management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets and associated R code used to conduct research presented in this manuscript are available on Figshare.com at https://doi.org/10.6084/m9.figshare.11911455.v1. The Forest Resource Inventory datasets provided by the Provincial Government of Newfoundland and Labrador and the Federal Government of Canada may be made available upon request, however additional permission through these agencies may be required.

Code availability

The R code used to conduct research presented in this manuscript are available on Figshare.com at https://doi.org/10.6084/m9.figshare.11911455.v1.

References

  • Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, Mbeau-Ache C, Franco M (2014) Functional traits explain variation in plant life history strategies. Proc Natl Acad Sci USA 111(2):740–745

    CAS  PubMed  Google Scholar 

  • Ågren GI (1988) Ideal nutrient productivities and nutrient proportions in plant growth. Plant, Cell Environ 11(7):613–620

    Google Scholar 

  • Ågren GI, Weih M (2012) Plant stoichiometry at different scales: element concentration patterns reflect environment more than genotype. New Phytol 194(4):944–952

    PubMed  Google Scholar 

  • Alpert P (1991) Nitrogen sharing among ramets increases clonal growth in Fragaria chiloensis. Ecology 72(1):69–80

    Google Scholar 

  • Ashton IW, Miller AE, Bowman WD, Suding KN (2010) Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91(11):3252–3260

    PubMed  Google Scholar 

  • Asner GP, Anderson CB, Martin RE, Tupayachi R, Knapp DE, Sinca F (2015) Landscape biogeochemistry reflected in shifting distributions of chemical traits in the Amazon forest canopy. Nat Geosci 8(7):567–573

    CAS  Google Scholar 

  • Balluffi-Fry J, Leroux SJ, Wiersma YF, Heckford TR, Rizzuto M, Richmond IC, Wal EV (2020) Quantity–quality trade-offs revealed using a multiscale test of herbivore resource selection on elemental landscapes. Ecol Evol. https://doi.org/10.1002/ece3.6975

    Article  PubMed  PubMed Central  Google Scholar 

  • Balzotti CS, Asner GP, Taylor PG, Cleveland CC, Cole R, Martin RE, Nasto M, Osborne BB, Porder S, Townsend AR (2016) Environmental controls on canopy foliar nitrogen distributions in a neotropical lowland forest. Ecol Appl 26(8):2451–2464

    Google Scholar 

  • Barron-Gafford GA, Scott RL, Jenerette GD, Hamerlynck EP, Huxman TE (2012) Temperature and precipitation controls over leaf- and ecosystem-level CO2 flux along a woody plant encroachment gradient. Glob Change Biol 18(4):1389–1400

    Google Scholar 

  • Becknell JM, Powers JS (2014) Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest. Can J for Res. https://doi.org/10.1139/cjfr-2013-0331

    Article  Google Scholar 

  • Bernhardt ES, Blaszczak JR, Ficken CD, Fork ML, Kaiser KE, Seybold EC (2017) Control points in ecosystems: moving beyond the hot spot hot moment concept. Ecosystems 20(4):665–682

    Google Scholar 

  • Bittebiere A-K, Saiz H, Mony C (2019) New insights from multidimensional trait space responses to competition in two clonal plant species. Funct Ecol. https://doi.org/10.1111/1365-2435.13220

    Article  Google Scholar 

  • Blanes MC, Viñegla B, Merino J, Carreira JA (2013) Nutritional status of Abies pinsapo forests along a nitrogen deposition gradient: do C/N/P stoichiometric shifts modify photosynthetic nutrient use efficiency? Oecologia 171(4):797–808

    PubMed  Google Scholar 

  • Booker FL, Maier CA (2001) Atmospheric carbon dioxide, irrigation, and fertilization effects on phenolic and nitrogen concentrations in loblolly pine (Pinus taeda) needles. Tree Physiol 21(9):609–616

    CAS  PubMed  Google Scholar 

  • Brauer VS, Stomp M, Huisman J (2012) The nutrient-load hypothesis: patterns of resource limitation and community structure driven by competition for nutrients and light. Am Nat 179(6):721–740

    PubMed  Google Scholar 

  • Bryant JP, Chapin FS, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40(3):357

    CAS  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, Berlin

    Google Scholar 

  • Cachet T, Brevard H, Chaintreau A, Demyttenaere J, French L, Gassenmeier K, Joulain D, Koenig T, Leijs H, Liddle P, Loesing G, Marchant M, Merle Ph, Saito K, Schippa C, Sekiya F, Smith T (2016) IOFI recommended practice for the use of predicted relative-response factors for the rapid quantification of volatile flavouring compounds by GC-FID. Flavour Fragr J 31(3):191–194

    CAS  Google Scholar 

  • Callis-Duehl K, Vittoz P, Defossez E, Rasmann S (2017) Community-level relaxation of plant defenses against herbivores at high elevation. Plant Ecol 218(3):291–304

    Google Scholar 

  • Canadian digital elevation model: product specifications-edition 1.1. (2016) [Map]. Natural Resources Canada

  • Champagne E, Moore BD, Côté SD, Tremblay J-P (2018) Spatial correlations between browsing on balsam fir by white-tailed deer and the nutritional value of neighboring winter forage. Ecol Evol 8(5):2812–2823

    PubMed  PubMed Central  Google Scholar 

  • Chapin FS (2003) Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change. Ann Bot 91(4):455–463

    PubMed  PubMed Central  Google Scholar 

  • Cornelissen JHC, Cornwell WK (2014) The tree of life in ecosystems: evolution of plant effects on carbon and nutrient cycling. J Ecol 102(2):269–274

    Google Scholar 

  • Couture JJ, Holeski LM, Lindroth RL (2014) Long-term exposure to elevated CO2 and O3 alters aspen foliar chemistry across developmental stages. Plant, Cell Environ 37(3):758–765

    CAS  Google Scholar 

  • Descombes P, Marchon J, Pradervand J-N, Bilat J, Guisan A, Rasmann S, Pellissier L (2017) Community-level plant palatability increases with elevation as insect herbivore abundance declines. J Ecol 105(1):142–151

    Google Scholar 

  • Diaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA et al (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15(3):295–304

    Google Scholar 

  • Dirnböck T, Kraus D, Grote R, Klatt S, Kobler J, Schindlbacher A, Seidl R, Thom D, Kiese R (2020) Substantial understory contribution to the C sink of a European temperate mountain forest landscape. Landsc Ecol 35(2):483–499

    PubMed  PubMed Central  Google Scholar 

  • Dunn AL, Wofsy SC, Bright AVH (2009) Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest. Ecol Appl 19(2):495–504. https://doi.org/10.1890/07-0771.1

    Article  PubMed  Google Scholar 

  • Duparc A, Garel M, Marchand P, Dubray D, Maillard D, Loison A (2020) Through the taste buds of a large herbivore: foodscape modeling contributes to an understanding of forage selection processes. Oikos 129(2):170–183. https://doi.org/10.1111/oik.06386

    Article  Google Scholar 

  • Elser JJ, Hamilton A (2007) Stoichiometry and the new biology: the future is now. PLoS Biol 5(7):e181

    PubMed  PubMed Central  Google Scholar 

  • Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010) Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change: Tansley review. New Phytol 186(3):593–608

    CAS  PubMed  Google Scholar 

  • ESRI (2020). ArcGIS Desktop (version 10.8.1)[Computer software]. https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview

  • Fajardo A, Siefert A (2018) Intraspecific trait variation and the leaf economics spectrum across resource gradients and levels of organization. Ecology 99(5):1024–1030

    PubMed  Google Scholar 

  • Fan H, Wu J, Liu W, Yuan Y, Hu L, Cai Q (2015) Linkages of plant and soil C:N: P stoichiometry and their relationships to forest growth in subtropical plantations. Plant Soil 392(1):127–138

    CAS  Google Scholar 

  • Field C (1983) Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. Oecologia 56(2):341–347

    CAS  PubMed  Google Scholar 

  • Filipiak M (2018) A better understanding of bee nutritional ecology is needed to optimize conservation strategies for wild bees—the application of ecological stoichiometry. Insects. https://doi.org/10.3390/insects9030085

    Article  PubMed  PubMed Central  Google Scholar 

  • Forkner RE, Marquis RJ (2004) Uneven-aged and even-aged logging alter foliar phenolics of oak trees remaining in forested habitat matrix. For Ecol Manag 199(1):21–37

    Google Scholar 

  • Fyllas NM, Michelaki C, Galanidis A, Evangelou E, Zaragoza-Castells J, Dimitrakopoulos PG, Tsadilas C, Arianoutsou M, Lloyd J (2020) Functional trait variation among and within species and plant functional types in mountainous mediterranean forests. Front Plant Sci. https://doi.org/10.3389/fpls.2020.00212

    Article  PubMed  PubMed Central  Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104(2):230–246

    Google Scholar 

  • Gimona A, van der Horst D (2007) Mapping hotspots of multiple landscape functions: a case study on farmland afforestation in Scotland. Landsc Ecol 22(8):1255–1264

    Google Scholar 

  • Glassmire AE, Jeffrey CS, Forister ML, Parchman TL, Nice CC, Jahner JP, Wilson JS, Walla TR, Richards LA, Smilanich AM, Leonard MD, Morrison CR, Simbaña W, Salagaje LA, Dodson CD, Miller JS, Tepe EJ, Villamarin-Cortez S, Dyer LA (2016) Intraspecific phytochemical variation shapes community and population structure for specialist caterpillars. New Phytol 212(1):208–219

    PubMed  PubMed Central  Google Scholar 

  • Gosse J, Hermanutz L, McLaren B, Deering P, Knight T (2011) Degradation of boreal forests by nonnative herbivores in Newfoundland’s National Parks: recommendations for ecosystem restoration. Nat Areas J 31(4):331–339

    Google Scholar 

  • Grime PJ, Pierce S (2012) The evolutionary strategies that shape ecosystems. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Hallett RA, Hornbeck JW (1997) Foliar and soil nutrient relationships in red oak and white pine forests. Can J for Res 27:12

    Google Scholar 

  • Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE (2011) Nutrient co-limitation of primary producer communities. Ecol Lett 14(9):852–862

    PubMed  Google Scholar 

  • Harvey E, Gounand I, Ward CL, Altermatt F (2017) Bridging ecology and conservation: from ecological networks to ecosystem function. J Appl Ecol 54(2):371–379

    Google Scholar 

  • Harvey E, Gounand I, Fronhofer EA, Altermatt F (2019) Metaecosystem dynamics drive community composition in experimental, multi-layered spatial networks. Oikos. https://doi.org/10.1111/oik.07037

    Article  Google Scholar 

  • Hassell MP, Comins HN, May RM (1994) Species coexistence and self-organizing spatial dynamics. Nature 370:290–292

    Google Scholar 

  • Haynes KJ, Cronin JT (2004) Confounding of patch quality and matrix effects in herbivore movement studies. Landsc Ecol 19(2):119–124

    Google Scholar 

  • He P, Fontana S, Sardans J, Peñuelas J, Gessler A, Schaub M, Rigling A, Li H, Jiang Y, Li M-H (2019) The biogeochemical niche shifts of Pinus sylvestris var. mongolica along an environmental gradient. Environ Exp Bot 167:103825

    Google Scholar 

  • Hemming JDC, Lindroth RL (1999) Effects of light and nutrient availability on aspen: growth, phytochemistry, and insect performance. J Chem Ecol 25(7):1687

    CAS  Google Scholar 

  • Hessen DO, Ågren GI, Anderson TR, Elser JJ, de Ruiter PC (2004) Carbon sesquestration in ecosystems: the role of stoichiometry. Ecology 85(5):1179–1192

    Google Scholar 

  • Hobbie SE (2015) Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol 30(6):357–363

    Google Scholar 

  • Hollinger DY (1996) Optimality and nitrogen allocation in a tree canopy. Tree Physiol 16(7):627–634

    CAS  PubMed  Google Scholar 

  • Hijmans RJ (2020) raster: Geographic analysis and modeling with raster data. R package version 2.4-5. http://CRAN.R-project.org/package=raster

  • Hunter MD (2016) The phytochemical landscape: linking trophic interactions and nutrient dynamics. Princeton University Press, Princeton

    Google Scholar 

  • Hunter MD, Schultz JC (1995) Fertilization mitigates chemical induction and herbivore responses within damaged oak trees. Ecology 76(4):1226–1232

    Google Scholar 

  • Hussain A, Rodriguez-Ramos JC, Erbilgin N (2019) Spatial characteristics of volatile communication in lodgepole pine trees: evidence of kin recognition and intra-species support. Sci Total Environ 692:127–135

    CAS  PubMed  Google Scholar 

  • Jiang Y, Zang R, Lu X, Huang Y, Ding Y, Liu W, Long W, Zhang J, Zhang Z (2015) Effects of soil and microclimatic conditions on the community-level plant functional traits across different tropical forest types. Plant Soil 390(1):351–367

    CAS  Google Scholar 

  • Jiang Y, Rocha AV, Rastetter EB, Shaver GR, Mishra U, Zhuang Q, Kwiatkowski BL (2016) C-N–P interactions control climate driven changes in regional patterns of C storage on the North Slope of Alaska. Landsc Ecol 31(1):195–213

    Google Scholar 

  • Jobbágy EG, Jackson RB (2004) The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology 85(9):2380–2389

    Google Scholar 

  • Jones JW, Starbuck MJ, Jenkerson CB (2013) Landsat surface reflectance quality assurance extraction (version 1.7): U.S. Geol Surv Tech Methods from https://pubs.usgs.gov/tm/11/c07. Accessed 7 Jul 2019

  • Jung V, Violle C, Mondy C, Hoffmann L, Muller S (2010) Intraspecific variability and trait-based community assembly. J Ecol 98(5):1134–1140

    Google Scholar 

  • Kerkhoff AJ, Enquist BJ, Elser JJ, Fagan WF (2005) Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Glob Ecol Biogeogr 14(6):585–598

    Google Scholar 

  • Kessler A (2015) The information landscape of plant constitutive and induced secondary metabolite production. Curr Opin Insect Sci 8:47–53

    PubMed  Google Scholar 

  • Kichenin E, Wardle DA, Peltzer DA, Morse CW, Freschet GT (2013) Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Funct Ecol 27(5):1254–1261

    Google Scholar 

  • Knops JMH, Bradley KL, Wedin DA (2002) Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecol Lett 5(3):454–466

    Google Scholar 

  • Krishna MP, Mohan M (2017) Litter decomposition in forest ecosystems: a review. Energy, Ecol Environ 2(4):236–249

    Google Scholar 

  • Commission for Enviornmental Cooperation (2017) Land cover map of North America at 30 metres (1st ed.) Canada Centre for Remote Sensing, Ottawa, ON

  • Lavorel S, Grigulis K, Lamarque P, Colace M-P, Garden D, Girel J, Pellet G, Douzet R (2011) Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J Ecol 99(1):135–147

    Google Scholar 

  • Leroux SJ (2018) Ecological, evolutionary, and geographical correlates of variation in consumer elemental composition. Funct Ecol 32(10):2282–2284

    Google Scholar 

  • Leroux SJ (2019) On the prevalence of uninformative parameters in statistical models applying model selection in applied ecology. PLoS ONE 14(2):12

    Google Scholar 

  • Leroux SJ, Wal EV, Wiersma YF, Charron L, Ebel JD, Ellis NM, Hart C, Kissler E, Saunders PW, Moudrá L, Tanner AL, Yalcin S (2017) Stoichiometric distribution models: ecological stoichiometry at the landscape extent. Ecol Lett 20(12):1495–1506

    PubMed  Google Scholar 

  • Li B, Shibuya T, Yogo Y, Hara T (2004) Effects of ramet clipping and nutrient availability on growth and biomass allocation of yellow nutsedge. Ecol Res 19(6):603–612

    Google Scholar 

  • Li Y, Reich PB, Schmid B, Shrestha N, Feng X, Lyu T, Maitner BS, Xu X, Li Y, Zou D, Tan Z-H, Su X, Tang Z, Guo Q, Feng X, Enquist BJ, Wang Z (2020) Leaf size of woody dicots predicts ecosystem primary productivity. Ecol Lett 23(6):1003–1013

    PubMed  PubMed Central  Google Scholar 

  • Lindroth RL, Osier TL, Barnhill HRH, Wood SA (2002) Effects of genotype and nutrient availability on phytochemistry of trembling aspen (Populus tremuloides Michx.) during leaf senescence. Biochem Syst Ecol 30(4):297–307

    CAS  Google Scholar 

  • Liu S, Yan Z, Chen Y, Zhang M, Chen J, Han W (2019) Foliar pH, an emerging plant functional trait: biogeography and variability across northern China. Glob Ecol Biogeogr 28(3):386–397

    Google Scholar 

  • Lohbeck M, Poorter L, Lebrija-Trejos E, Martínez-Ramos M, Meave JA, Paz H, Pérez-García EA, Romero-Pérez IE, Tauro A, Bongers F (2013) Successional changes in functional composition contrast for dry and wet tropical forest. Ecology 94(6):1211–1216

    PubMed  Google Scholar 

  • Lovell ST, Johnston DM (2009) Designing landscapes for performance based on emerging principles in landscape ecology. Ecol Soc. https://doi.org/10.5751/ES-02912-140144

    Article  Google Scholar 

  • Macek M, Kopecký M, Wild J (2019) Maximum air temperature controlled by landscape topography affects plant species composition in temperate forests. Landsc Ecol 34(11):2541–2556

    Google Scholar 

  • McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6(4):301–312

    CAS  Google Scholar 

  • Mendez M, Karlsson SP (2005) Nutrient stoichiometry in Pinguicula vulgaris: nutrient availability, plant size, and reproductive status. Ecology 86(4):982–991

    Google Scholar 

  • Merems JL, Shipley LA, Levi T, Ruprecht J, Clark DA, Wisdom MJ, Jackson NJ, Stewart KM, Long RA (2020) Nutritional-landscape models link habitat use to condition of mule deer (Odocoileus hemionus). Front Ecol Evol. https://doi.org/10.3389/fevo.2020.00098

    Article  Google Scholar 

  • Morquecho-Contreras A, Zepeda-Gómez C, Sánchez-Sánchez H (2018) Plant antiherbivore defense in diverse environments. In: Hufnagel L (ed) Pure and applied biogeography. InTech, London. https://doi.org/10.5772/intechopen.70418

    Chapter  Google Scholar 

  • Müller M, Oelmann Y, Schickhoff U, Böhner J, Scholten T (2017) Himalayan treeline soil and foliar C:N: P stoichiometry indicate nutrient shortage with elevation. Geoderma 291:21–32

    Google Scholar 

  • Niinemets Ü, Kull O (1998) Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: implications for foliage morphological plasticity. Tree Physiol 18(7):467–479

    PubMed  Google Scholar 

  • Pan Y, Horn J, Jenkins J, Birdsey R (2004) Importance of foliar nitrogen concentration to predict forest productivity in the mid-Atlantic region. For Sci 50(3):11

    Google Scholar 

  • Pausas JG, Bond WJ (2019) Humboldt and the reinvention of nature. J Ecol 107(3):1031–1037

    Google Scholar 

  • Pellissier L, Moreira X, Danner H, Serrano M, Salamin N, van Dam NM, Rasmann S (2016) The simultaneous inducibility of phytochemicals related to plant direct and indirect defences against herbivores is stronger at low elevation. J Ecol 104(4):1116–1125

    CAS  Google Scholar 

  • Peñuelas J, Fernández-Martínez M, Ciais P, Jou D, Piao S, Obersteiner M, Vicca S, Janssens IA, Sardans J (2019) The bioelements, the elementome, and the biogeochemical niche. Ecology 100(5):e02652

    PubMed  Google Scholar 

  • Perry GLW, Enright NJ, Miller BP, Lamont BB (2013) Do plant functional traits determine spatial pattern? A test on species-rich shrublands, Western Australia. J Veg Sci 24(3):441–452

    Google Scholar 

  • Philben M, Ziegler SE, Edwards KA, Kahler R, Benner R (2016) Soil organic nitrogen cycling increases with temperature and precipitation along a boreal forest latitudinal transect. Biogeochemistry 127(2–3):397–410

    CAS  Google Scholar 

  • Pickett STA, Cadenasso ML (1995) Landscape ecology: spatial heterogeneity in ecological systems. Science 269(5222):331–334

    CAS  PubMed  Google Scholar 

  • Poitevin E (2016) Official methods for the determination of minerals and trace elements in infant formula and milk products: a review. J AOAC Int 99(1):42–52

    CAS  PubMed  Google Scholar 

  • Ponette-González AG, Weathers KC, Curran LM (2010) Tropical land-cover change alters biogeochemical inputs to ecosystems in a Mexican montane landscape. Ecol Appl 20(7):1820–1837

    PubMed  Google Scholar 

  • Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87(7):1733–1743

    PubMed  Google Scholar 

  • Pyakurel A, Wang JR (2014) Leaf morphological and stomatal variations in paper birch populations along environmental gradients in Canada. Am J Plant Sci 05(11):1508–1520

    Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. version 4.0.1-3. R Foundation for Statistical Computing. https://www.R-project.org/

  • Radwan MA, Harrington CA (2011) Foliar chemical concentrations, growth, and site productivity relations in western red cedar. Can J for Res. https://doi.org/10.1139/x86-185

    Article  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101(30):11001–11006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richards LA, Dyer LA, Forister ML, Smilanich AM, Dodson CD, Leonard MD, Jeffrey CS (2015) Phytochemical diversity drives plant–insect community diversity. Proc Natl Acad Sci USA 112(35):10973–10978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AD (2004) Foliar chemistry of balsam fir and red spruce in relation to elevation and the canopy light gradient in the mountains of the northeastern United States. Plant Soil 260(1):291–299

    CAS  Google Scholar 

  • Rijkers T, Pons TL, Bongers F (2000) The effect of tree height and light availability on photosynthetic leaf traits of four neotropical species differing in shade tolerance. Funct Ecol 14(1):77–86

    Google Scholar 

  • Rizzuto M, Leroux SJ, Wal EV, Wiersma YF, Heckford TR, Balluffi-Fry J (2019) Patterns and potential drivers of intraspecific variability in the body C, N, and P composition of a terrestrial consumer, the snowshoe hare (Lepus americanus). Ecol Evol 9(24):14453–14464

    PubMed  PubMed Central  Google Scholar 

  • Santiago LS, Kitajima K, Wright SJ, Mulkey SS (2004) Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest. Oecologia 139(4):495–502

    PubMed  Google Scholar 

  • Sardans J, Alonso R, Carnicer J, Fernández-Martínez M, Vivanco MG, Peñuelas J (2016a) Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain. Perspect Plant Ecol Evol Syst 18:52–69

    Google Scholar 

  • Sardans J, Alonso R, Janssens IA, Carnicer J, Vereseglou S, Rillig MC, Fernández-Martínez M, Sanders TGM, Peñuelas J (2016b) Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across European Pinus sylvestris forests: Relationships with climate, N deposition and tree growth. Funct Ecol 30(5):676–689

    Google Scholar 

  • Schmitz OJ, Wilmers CC, Leroux SJ, Doughty CE, Atwood TB, Galetti M, Davies AB, Goetz SJ (2018) Animals and the zoogeochemistry of the carbon cycle. Science. https://doi.org/10.1126/science.aar3213

    Article  PubMed  Google Scholar 

  • Sedio BE, Echeverri JCR, Boya PCA, Wright SJ (2017) Sources of variation in foliar secondary chemistry in a tropical forest tree community. Ecology 98(3):616–623

    PubMed  Google Scholar 

  • Shen W, Lin Y, Jenerette GD, Wu J (2011) Blowing litter across a landscape: effects on ecosystem nutrient flux and implications for landscape management. Landsc Ecol 26(5):629–644

    Google Scholar 

  • Shepard ELC, Wilson RP, Rees WG, Grundy E, Lambertucci SA, Vosper SB (2013) Energy landscapes shape animal movement ecology. Am Nat 182(3):298–312

    PubMed  Google Scholar 

  • Shure DJ, Wilson LA (1993) Patch-size effects on plant phenolics in successional openings of the southern appalachians. Ecology 74(1):55–67

    CAS  Google Scholar 

  • Smith CK, Coyea MR, Munson AD (2000) Soil carbon, nitrogen, and phosphorus stocks and dynamics under disturbed black spruce forests. Ecol Appl 10(3):775–788

    Google Scholar 

  • Smith NJ, McDonald GW, Patterson MG (2020) Biogeochemical cycling in the anthropocene: quantifying global environment-economy exchanges. Ecol Model 418:108816

    Google Scholar 

  • Smithwick EAH, Harmon ME, Domingo JB (2003) Modeling multiscale effects of light limitations and edge-induced mortality on carbon stores in forest landscapes. Landsc Ecol 18(7):701–721

    Google Scholar 

  • South RG (1983) Biogeography and ecology of the island of Newfoundland (Vol. 48) Dr. W. Junk Publisheres, The Hague, The Netherlands

  • Strahan RT, Meador AJS, Huffman DW, Laughlin DC (2016) Shifts in community-level traits and functional diversity in a mixed conifer forest: a legacy of land-use change. J Appl Ecol 53(6):1755–1765

    Google Scholar 

  • Tang Z, Xu W, Zhou G, Bai Y, Li J, Tang X, Chen D, Liu Q, Ma W, Xiong G, He H, He N, Guo Y, Guo Q, Zhu J, Han W, Hu H, Fang J, Xie Z (2018) Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proc Natl Acad Sci USA 115(16):4033–4038

    PubMed  PubMed Central  Google Scholar 

  • Turner MG (1989) Landscape ecology: the effect of pattern on process. Landsc Ecol 20:171–197

    Google Scholar 

  • Turner MG (2005) Landscape ecology: what is the state of the science? Annu Rev Ecol Evol Syst 36(1):319–344

    Google Scholar 

  • Urbina I, Sardans J, Grau O, Beierkuhnlein C, Jentsch A, Kreyling J, Peñuelas J (2017) Plant community composition affects the species biogeochemical niche. Ecosphere 8(5):e01801

    Google Scholar 

  • Vellend M (2016) The theory of ecological communities (MPB-57). Princeton University Press, Princeton

    Google Scholar 

  • Vermote E, Justice C, Claverie M, Franch B (2016) Preliminary analysis of the performance of the Landsat 8/OLI surface reflectance product. Remote Sens Environ 185:46–56

    PubMed  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of earth’s ecosystems. Science. https://doi.org/10.1126/science.277.5325.494

    Article  Google Scholar 

  • Vranken I, Baudry J, Aubinet M, Visser M, Bogaert J (2015) A review on the use of entropy in landscape ecology: heterogeneity, unpredictability, scale dependence and their links with thermodynamics. Landsc Ecol 30(1):51–65

    Google Scholar 

  • Wam HK, Felton AM, Stolter C, Nybakken L, Hjeljord O (2018) Moose selecting for specific nutritional composition of birch places limits on food acceptability. Ecol Evol 8(2):1117–1130

    PubMed  Google Scholar 

  • Weih M, Hoeber S, Beyer F, Fransson P (2014) Traits to ecosystems: the ecological sustainability challenge when developing future energy crops. Front Energy Res. https://doi.org/10.3389/fenrg.2014.00017

    Article  Google Scholar 

  • Wiederholt R, Paudel R, Khare Y, Davis SE, Melodie Naja G, Romañach S, Pearlstine L, Van Lent T (2019) A multi-indicator spatial similarity approach for evaluating ecological restoration scenarios. Landsc Ecol. https://doi.org/10.1007/s10980-019-00904-w

    Article  Google Scholar 

  • Wilkes MA, Edwards F, Jones JI, Murphy JF, England J, Friberg N, Hering D, Poff NL, Usseglio-Polatera P, Verberk WCEP, Webb J, Brown LE (2020) Trait-based ecology at large scales: assessing functional trait correlations, phylogenetic constraints and spatial variability using open data. Glob Change Biol 26(12):7255–7267

    Google Scholar 

  • Wilson JK, Ruiz L, Duarte J, Davidowitz G (2019) The nutritional landscape of host plants for a specialist insect herbivore. Ecol Evol 9(23):13104–13113

    PubMed  PubMed Central  Google Scholar 

  • Zhang L-L, He W-M (2009) Consequences of ramets helping ramets: no damage and increased nutrient use efficiency in nurse ramets of Glechoma longituba. Flora Morphol Distrib Funct Ecol Plants 204(3):182–188

    Google Scholar 

  • Zhang H, Yang X, Wang J, Wang GG, Yu M, Wu T (2017) Leaf N and P stoichiometry in relation to leaf shape and plant size for Quercus acutissima provenances across China. Sci Rep. https://doi.org/10.1038/srep46133

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao N, He N, Wang Q, Zhang X, Wang R, Xu Z, Yu G (2014) The altitudinal patterns of leaf c:n:p stoichiometry are regulated by plant growth form, climate and soil on Changbai Mountain, China. PLoS ONE 9(4):e95196

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by the Government of Newfoundland and Labrador Centre for Forest Science Innovation (CFSI); Memorial University of Newfoundland SEEDS funding to SJL, EVW, YFW; Mitacs Accelerate Grant to YFW, SJL and EVW; Canada Foundation for Innovation funding to YFW, and the Natural Sciences and Engineering Research Council of Canada (Discovery Grant to YFW). In-kind support was provided by Parks Canada—Terra Nova National Park and the CFSI, with thanks to Janet Feltham and Blair Adams. In addition, we would also like to thank the Landscape Ecology and Spatial Analysis lab at Memorial University of Newfoundland. Thank you to three anonymous reviewers for helpful comments that helped to substantially improve an earlier version of the manuscript.

Funding

This research was funded by the Government of Newfoundland and Labrador Centre for Forest Science and Innovation to YFW (Grant #221273), SJL (Grant #221274), and EVW (Grant #221275), Government of Newfoundland and Labrador Innovate NL Leverage R&D to EVW & SJL (Grant #5404.1884.102) and Ignite R&D to SJL (Grant #5404.1696.101) programs, Mitacs Accelerate Graduate Research Internship program to YW, EVW, & SJL (Grant #IT05904), the Canada Foundation for Innovation John R. Evans Leaders Fund to EVW & SJL (Grant #35973), and a Natural Science and Engineering Research Council Discovery Grant to YFW (Grant #RGPIN-2015-05799).

Author information

Authors and Affiliations

Authors

Contributions

TH, SJL, YFW, EVW and MR contributed to the study conception and design. TH and MR collected data and analyses were performed by TH. The manuscript was drafted by TH and all authors commented on previous versions of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Travis R. Heckford.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Consent for publication

There are no restrictions to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11383 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heckford, T.R., Leroux, S.J., Vander Wal, E. et al. Spatially explicit correlates of plant functional traits inform landscape patterns of resource quality. Landsc Ecol 37, 59–80 (2022). https://doi.org/10.1007/s10980-021-01334-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-021-01334-3

Keywords

Navigation