Skip to main content

Advertisement

Log in

Incorporating social values and wildlife habitats for biodiversity conservation modeling in landscapes of the Great Plains

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Socioecological information should be properly employed in the process of spatial analysis, planning, and management in order to respond to complex and multidirectional biodiversity issues.

Objectives

We conducted this study to map socioecological hotspots, where landscapes of social significance and wildlife habitats overlap, show to what extent and how the spatial distribution of social values (SVs) of people toward their landscapes interact with wildlife habitats in socioecological hotspots, simulate the potential for habitat degradation as a result of human activities linked to SVs, identify strategic areas for landscape restoration in socioecological hotspots, where both environmental conditions and SVs support the persistence and colonization of wildlife, and detect specific areas, where SVs of people may be contradictive leading to land-use disputes.

Methods

We developed a model to show the potential for habitat degradation based on the spatial distribution of SVs associated with landscapes. We restricted our study to the Upper Missouri River Basin (UMRB) and focused on habitats of five keystone mammal species to assess the validity of our model.

Results

Habitat loss, habitat subdivision, habitat dispersion, and habitat shrinkage can be four consequences of human activities for biodiversity in socioecological hotspots of the UMRB, however, the magnitude of impacts varies among landscapes and mammal species.

Conclusion

Spatially explicit models to properly map SVs in relation to wildlife habitats are still associated with some uncertainties and limitations, and therefore, require further development. Change in SVs and public attitudes toward land use is essential to avoid further biodiversity loss in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aldrich SP, Walker RT, Arima EY, Caldas MM, Browder JO, Perz S (2006) Land-cover and land-use change in the Brazilian Amazon: smallholders, ranchers, and frontier stratification. Econ Geogr 82(3):265–288

    Google Scholar 

  • Alessa LN, Kliskey AA, Brown G (2008) Social–ecological hotspots mapping: a spatial approach for identifying coupled social–ecological space. Landsc Urban Plan 85(1):27–39

    Google Scholar 

  • Allred BW, Fuhlendorf SD, Hamilton RG (2011) The role of herbivores in Great Plains conservation: comparative ecology of bison and cattle. Ecosphere 2(3):1–17

    Google Scholar 

  • Alvey AA (2006) Promoting and preserving biodiversity in the urban forest. Urban For Urban Green 5(4):195–201

    Google Scholar 

  • Arthun D, Holechek JL (1982) The North American bison History. Rangel Arch 4(3):123–125

    Google Scholar 

  • Bagstad KJ, Reed JM, Semmens DJ, Sherrouse BC, Troy A (2016) Linking biophysical models and public preferences for ecosystem service assessments: a case study for the Southern Rocky Mountains. Reg Environ Change 16(7):2005–2018

    Google Scholar 

  • Bailey DR, Dittbrenner BJ, Yocom KP (2019) Reintegrating the North American beaver (Castorcanadensis) in the urban landscape. Wiley Interdiscip Rev Water 6(1):e1323

    Google Scholar 

  • Ban NC, Mills M, Tam J, Hicks CC, Klain S, Stoeckl N, Bottrill MC, Levine J, Pressey RL, Satterfield T, Chan KM (2013) A social–ecological approach to conservation planning: embedding social considerations. Front Ecol Environ 11(4):194–202

    Google Scholar 

  • Barbosa P, Schumaker NH, Brandon KR, Bager A, Grilo C (2020) Simulating the consequences of roads for wildlife population dynamics. Landsc Urban Plan 193:103672

    PubMed  Google Scholar 

  • Barros A, Monz C, Pickering C (2015) Is tourism damaging ecosystems in the Andes? Current knowledge and an agenda for future research. Ambio 44(2):82–98

    CAS  PubMed  Google Scholar 

  • Beever EA, Hall LE, Varner J, Loosen AE, Dunham JB, Gahl MK, Smith FA, Lawler JJ (2017) Behavioral flexibility as a mechanism for coping with climate change. Front Ecol Environ 15(6):299–308

    Google Scholar 

  • Benítez-López A, Alkemade R, Verweij PA (2010) The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol Cons 143(6):1307–1316

    Google Scholar 

  • Bennett NJ, Dearden P (2014) Why local people do not support conservation: community perceptions of marine protected area livelihood impacts, governance and management in Thailand. Mar Policy 44:107–116

    Google Scholar 

  • Bennett NJ, Di Franco A, Calò A, Nethery E, Niccolini F, Milazzo M, Guidetti P (2019) Local support for conservation is associated with perceptions of good governance, social impacts, and ecological effectiveness. Conserv Lett 12(4):e12640

    Google Scholar 

  • Biedenweg K, Williams K, Cerveny L, Styers D (2019) Is recreation a landscape value? Exploring underlying values in landscape values mapping. Landsc Urban Plan 185:24–27

    Google Scholar 

  • Botequilha-Leitao A, Ahern J (2002) Applying landscape ecological concepts and metrics in sustainable landscape planning. Landsc Urban Plan 59(2):65–93

    Google Scholar 

  • Botequilha-Leitao A, Miller J, Ahern J, Mc Garigal K (2006) Measuring landscapes: a planner’s handbook. Island Press, Washington, D.C.

    Google Scholar 

  • Bradshaw CJ (2012) Little left to lose: deforestation and forest degradation in Australia since European colonization. J Plant Ecol 5(1):109–120

    Google Scholar 

  • Brown G, Weber D, De Bie K (2014) Assessing the value of public lands using public participation GIS (PPGIS) and social landscape metrics. Appl Geogr 53:77–89

    Google Scholar 

  • Brown G, Reed P, Raymond CM (2020) Mapping place values: 10 lessons from two decades of public participation GIS empirical research. Appl Geogr 116:102156

    Google Scholar 

  • Bryan BA, Raymond CM, Crossman ND, King D (2011) Comparing spatially explicit ecological and social values for natural areas to identify effective conservation strategies. Conserv Biol 25(1):172–181

    PubMed  Google Scholar 

  • Butchart SH, Walpole M, Collen B, Van Strien A, Scharlemann JP, Almond RE, Baillie JE, Bomhard B, Brown C, Bruno J, Carpenter KE (2010) Global biodiversity: indicators of recent declines. Science 328(5982):1164–1168

    CAS  PubMed  Google Scholar 

  • Butler WH, Schultz CA (2019) A new era for collaborative forest management: policy and practice insights from the Collaborative Forest Landscape Restoration Program. Routledge, Abingdon

    Google Scholar 

  • Carnes M (2019) Land-use change and social values in micropolitan communities in the Upper Missouri River Basin. Master thesis. University of South Dakota, Vermillion

    Google Scholar 

  • Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Nat Acad Sci 114(30):E6089–E6096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collen P, Gibson RJ (2000) The general ecology of beavers (Castor spp.), as related to their influence on stream ecosystems and riparian habitats, and the subsequent effects on fish–a review. Rev Fish Biol Fish 10(4):439–461

    Google Scholar 

  • Collier KJ, Parkyn SM, Rabeni CF (1997) Koura: a keystone species. Water Atmos 5(1):18–20

    Google Scholar 

  • Commission for Environmental Cooperation (2020) 2010 Land Cover of North America at 30 Meters, North American Land Change Monitoring System, Ed. 2.0. 2020. Available online at: http://www.cec.org/north-american-environmental-atlas/land-cover-2010-landsat-30m

  • Cooke HA, Zack S (2008) Influence of beaver dam density on riparian areas and riparian birds in shrubsteppe of Wyoming. West N Am Nat 68(3):365–373

    Google Scholar 

  • Cushman SA, McGarigal K, Neel MC (2008) Parsimony in landscape metrics: strength, universality, and consistency. Ecol Ind 8(5):691–703

    Google Scholar 

  • Demmer R, Beschta RL (2008) Recent history (1988–2004) of beaver dams along Bridge Creek in central Oregon. Northwest Sci 82(4):309–318

    Google Scholar 

  • Dietz MS, Belote RT, Gage J, Hahn BA (2020) An assessment of vulnerable wildlife, their habitats, and protected areas in the contiguous United States. Biol Cons 248:108646

    Google Scholar 

  • Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJ, Collen B (2014) Defaunation in the Anthropocene. Science 345(6195):401–406

    CAS  PubMed  Google Scholar 

  • Dramstad WE, Olson JD, Forman RTT (1996) Landscape ecology principles in landscape architecture and land-use planning. Harvard University Graduate School of Design and Island Press, Cambridge

    Google Scholar 

  • Elmqvist T, Fragkias M, Goodness J, Güneralp B, Marcotullio PJ, McDonald RI, Parnell S, Schewenius M, Sendstad M, Seto KC, Wilkinson C (2013) Urbanization, biodiversity and ecosystem services: challenges and opportunities: a global assessment. Springer, Dordrecht

    Google Scholar 

  • Ewers RM, Kliskey AD, Walker S, Rutledge D, Harding JS, Didham RK (2006) Past and future trajectories of forest loss in New Zealand. Biol Cons 133(3):312–325

    Google Scholar 

  • Flores D (1991) Bison ecology and bison diplomacy: the southern plains from 1800 to 1850. J Am Hist 78(2):465–485

    Google Scholar 

  • Foreman D (2004) Rewilding North America: a vision for conservation in the 21st century. Island Press, Washington, D.C.

    Google Scholar 

  • Forman RT (1995) Land Mosaics: The ecology of landscapes and regions. The ecological design and planning reader. Island Press, Washington, D.C.

    Google Scholar 

  • Frank B, Glikman JA, Marchini S (eds) (2019) Human-wildlife interactions: turning conflict into coexistence, vol 23. Cambridge University Press, Cambridge

    Google Scholar 

  • Garibaldi A, Turner N (2004) Cultural keystone species: implications for ecological conservation and restoration. Ecol Soc 9(3):1

    Google Scholar 

  • Gaston KJ, Bennie J, Davies TW, Hopkins J (2013) The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biol Rev 88(4):912–927

    PubMed  Google Scholar 

  • Gaynor KM, Hojnowski CE, Carter NH, Brashares JS (2018) The influence of human disturbance on wildlife nocturnality. Science 360(6394):1232–1235

    CAS  PubMed  Google Scholar 

  • Gergely KJ, Boykin KG, McKerrow AJ, Rubino MJ, Tarr NM, Williams SG (2019) Gap Analysis Project (GAP) terrestrial vertebrate species richness maps for the conterminous U.S.: U.S. Geological Survey Scientific Investigations Report 2019–5034, 99. https://doi.org/10.3133/sir20195034

  • Gervin CA, Bruun HH, Seipel T, Burgess ND (2019) Presence of both active and inactive colonies of prairie dogs contributes to higher vegetation heterogeneity at the landscape scale. Am Midland Nat 181(2):183–194

    Google Scholar 

  • Gibson PP, Olden JD (2014) Ecology, management, and conservation implications of North American beaver (Castor canadensis) in dryland streams. Aquat Conserv Mar Freshw Ecosyst 24(3):391–409

    Google Scholar 

  • Goheen JR, Swihart RK (2003) Food-hoarding behavior of gray squirrels and North American red squirrels in the central hardwoods region: implications for forest regeneration. Can J Zool 81(9):1636–1639

    Google Scholar 

  • Gökbulak F (2002) Effect of American bison (Bisonbison L.) on the recovery and germinability of seeds of range forage species. Grass Forage Sci 57(4):395–400

    Google Scholar 

  • Goldewijk KK, Ramankutty N (2004) Land cover change over the last three centuries due to human activities: the availability of new global data sets. GeoJournal 61(4):335–344

    Google Scholar 

  • Guerrero AM, Wilson KA (2017) Using a social–ecological framework to inform the implementation of conservation plans. Conserv Biol 31(2):290–301

    PubMed  Google Scholar 

  • Hale SL, Koprowski JL (2018) Ecosystem-level effects of keystone species reintroduction: a literature review. Restor Ecol 26(3):439–445

    Google Scholar 

  • Hessburg PF, Agee JK (2003) An environmental narrative of inland northwest United States forests, 1800–2000. For Ecol Manag 178(1–2):23–59

    Google Scholar 

  • Holden A (2016) Environment and tourism. Routledge Oxon, New York

    Google Scholar 

  • Hoogland J (ed) (2013) Conservation of the black-tailed prairie dog: saving North America’s western grasslands. Island Press, Washington, D.C

    Google Scholar 

  • Hu M, Li Z, Wang Y, Jiao M, Li M, Xia B (2019) Spatio-temporal changes in ecosystem service value in response to land-use/cover changes in the Pearl River Delta. Resour Conserv Recycl 149:106–114

    Google Scholar 

  • Isenberg AC (2020) The destruction of the bison: an environmental history, 1750–1920. Cambridge University Press, Cambridge

    Google Scholar 

  • Ives CD, Kendal D (2014) The role of social values in the management of ecological systems. J Environ Manag 144:67–72

    Google Scholar 

  • Jarchow ME, Liebman M, Dhungel S, Dietzel R, Sundberg D, Anex RP, Thompson ML, Chua T (2015) Trade-offs among agronomic, energetic, and environmental performance characteristics of corn and prairie bioenergy cropping systems. Gcb Bioenergy 7(1):57–71

    Google Scholar 

  • Jarchow M, Carnes M, Semmens D (2018) Mapping social values toward land use in the Upper Missouri River Basin. Presented at A Community on Ecosystem Services, Washington, D.C.

    Google Scholar 

  • Jarchow M, Swanson D, Kerby J (2020) North American grasslands as multifunctional landscapes. In: Leal Filho W, Azul A, Brandli L, Lange Salvia A, Wall T (eds) Life on land. Encyclopedia of the UN sustainable development goals. Springer, Cham, pp 1–20

    Google Scholar 

  • Jordan TG (1993) North American cattle-ranching frontiers: origins, diffusion, and differentiation. University of New Mexico Press, Albuquerque, p 147208

    Google Scholar 

  • Karimi A, Adams VM (2019) Planning for the future: combining spatially-explicit public preferences with tenure policies to support land-use planning. Land Use Policy 82:497–508

    Google Scholar 

  • Karimi A, Hockings M (2018) A social-ecological approach to land-use conflict to inform regional and conservation planning and management. Landsc Ecol 33(5):691–710

    Google Scholar 

  • Kenter JO, Raymond CM, Van Riper CJ, Azzopardi E, Brear MR, Calcagni F, Christie I, Christie M, Fordham A, Gould RK, Ives CD (2019) Loving the mess: navigating diversity and conflict in social values for sustainability. Sustain Sci 14(5):1439–1461

    Google Scholar 

  • Knapp AK, Blair JM, Briggs JM, Collins SL, Hartnett DC, Johnson LC, Towne EG (1999) The keystone role of bison in North American tallgrass prairie: Bison increase habitat heterogeneity and alter a broad array of plant, community, and ecosystem processes. Bioscience 49(1):39–50

    Google Scholar 

  • Kotliar NB, Baker BW, Whicker AD, Plumb G (1999) A critical review of assumptions about the prairie dog as a keystone species. Environ Manag 24(2):177–192

    CAS  Google Scholar 

  • Kotliar NB, Miller BJ, Reading RP, Clark TW, Hoogland JL (2006) The prairie dog as a keystone species. Island Press, Washington, D.C.

    Google Scholar 

  • Kupfer JA (2012) Landscape ecology and biogeography: rethinking landscape metrics in a post-FRAGSTATS landscape. Prog Phys Geogr 36(3):400–420

    Google Scholar 

  • Lacher TE Jr, Davidson AD, Fleming TH, Gómez-Ruiz EP, McCracken GF, Owen-Smith N, Peres CA, Vander Wall SB (2019) The functional roles of mammals in ecosystems. J Mammal 100(3):942–964

    Google Scholar 

  • Lampard EE (1955) The history of cities in the economically advanced areas. Econ Dev Cult Change 3(2):81–136

    Google Scholar 

  • Lapointe M, Cumming GS, Gurney GG (2019) Comparing ecosystem service preferences between urban and rural dwellers. Bioscience 69(2):108–116

    Google Scholar 

  • Law A, Gaywood MJ, Jones KC, Ramsay P, Willby NJ (2017) Using ecosystem engineers as tools in habitat restoration and rewilding: beaver and wetlands. Sci Total Environ 605:1021–1030

    PubMed  Google Scholar 

  • Law A, Levanoni O, Foster G, Ecke F, Willby NJ (2019) Are beavers a solution to the freshwater biodiversity crisis? Divers Distrib 25(11):1763–1772

    Google Scholar 

  • Liu J, Ouyang Z, Miao H (2010) Environmental attitudes of stakeholders and their perceptions regarding protected area-community conflicts: a case study in China. J Environ Manag 91(11):2254–2262

    Google Scholar 

  • Madden F (2004) Creating coexistence between humans and wildlife: global perspectives on local efforts to address human–wildlife conflict. Hum Dimens Wildl 9(4):247–257

    Google Scholar 

  • Manfredo MJ, Bruskotter JT, Teel TL, Fulton D, Schwartz SH, Arlinghaus R, Oishi S, Uskul AK, Redford K, Kitayama S, Sullivan L (2017) Why social values cannot be changed for the sake of conservation. Conserv Biol 31(4):772–780

    PubMed  Google Scholar 

  • Manning R (2011) Rewilding the West: restoration in a prairie landscape. University of California Press, Berkeley

    Google Scholar 

  • Mantyka-Pringle CS, Visconti P, Di Marco M, Martin TG, Rondinini C, Rhodes JR (2015) Climate change modifies risk of global biodiversity loss due to land-cover change. Biol Cons 187:103–111

    Google Scholar 

  • McGarigal K (2015) FRAGSTATS Help. http://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf

  • McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html

  • Meade TA (2016) History of modern Latin America: 1800 to the present. Wiley, Hoboken

    Google Scholar 

  • Mendes CP, Carreira D, Pedrosa F, Beca G, Lautenschlager L, Akkawi P, Bercê W, Ferraz KM, Galetti M (2020) Landscape of human fear in Neotropical rainforest mammals. Biol Cons 241:108257

    Google Scholar 

  • Meurk CD, Swaffield SR (2000) A landscape ecological framework for indigenous regeneration in rural New Zealand-Aotearoa. Landsc Urban Plan 50(1–3):129–144

    Google Scholar 

  • Mieczkowski Z (1995) Environmental issues of tourism and recreation. University Press of America, London

    Google Scholar 

  • Miller B, Reading R, Hoogland J, Clark T, Ceballos G, List R, Forrest S, Hanebury L, Manzano P, Pacheco J, Uresk D (2000) The role of prairie dogs as a keystone species: response to Stapp. Conserv Biol 14(1):318–321

    Google Scholar 

  • Mills LS, Soulé ME, Doak DF (1993) The keystone-species concept in ecology and conservation. Bioscience 43(4):219–224

    Google Scholar 

  • Morrison JC, Sechrest W, Dinerstein E, Wilcove DS, Lamoreux JF (2007) Persistence of large mammal faunas as indicators of global human impacts. J Mammal 88(6):1363–1380

    Google Scholar 

  • Naiman RJ (1988) Animal influences on ecosystem dynamics. Bioscience 38(11):750–752

    Google Scholar 

  • Naylor RL, Williams SL, Strong DR (2001) Aquaculture–a gateway for exotic species. Science. https://doi.org/10.1126/science.1064875

    Article  PubMed  Google Scholar 

  • Nickell Z, Varriano S, Plemmons E, Moran MD (2018) Ecosystem engineering by bison (Bison bison) wallowing increases arthropod community heterogeneity in space and time. Ecosphere 9(9):e02436

    Google Scholar 

  • Norton DA, Young LM, Byrom AE, Clarkson BD, Lyver POB, McGlone MS, Waipara NW (2016) How do we restore New Zealand’s biological heritage by 2050? Ecol Manag Restor 17(3):170–179

    Google Scholar 

  • Novacek MJ (2008) Engaging the public in biodiversity issues. Proc Natl Acad Sci 105(Supplement 1):11571–11578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nummi P, Holopainen S (2014) Whole-community facilitation by beaver: ecosystem engineer increases waterbird diversity. Aquat Conserv Mar Freshw Ecosyst 24(5):623–633

    Google Scholar 

  • Nummi P, Kuuluvaine T (2013) Forest disturbance by an ecosystem engineer: beaver in boreal forest landscapes. Boreal Environ Res 18(suppl A):13–24

    Google Scholar 

  • Nyhus PJ (2016) Human–wildlife conflict and coexistence. Annu Rev Environ Resour 41:143–171

    Google Scholar 

  • Okamoto DK, Poe MR, Francis TB, Punt AE, Levin PS, Shelton AO, Armitage DR, Cleary JS, Dressell SC, Jones R, Kitka H (2020) Attending to spatial social–ecological sensitivities to improve trade-off analysis in natural resource management. Fish Fish 21(1):1–12

    Google Scholar 

  • Opdam P, Wascher D (2004) Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol Cons 117(3):285–297

    Google Scholar 

  • Pacione M (2009) Urban geography: a global perspective. Routledge, New York

    Google Scholar 

  • Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JP, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WW, Chini L (2010) Scenarios for global biodiversity in the 21st century. Science 330(6010):1496–1501

    CAS  PubMed  Google Scholar 

  • Pickering C, Mount A (2010) Do tourists disperse weed seed? A global review of unintentional human-mediated terrestrial seed dispersal on clothing, vehicles and horses. J Sustain Tour 18(2):239–256

    Google Scholar 

  • Radosevich SR, Holt JS, Ghersa CM (2007) Ecology of weeds and invasive plants: relationship to agriculture and natural resource management. Wiley, Hoboken

    Google Scholar 

  • Ramankutty N, Foley JA (1999) Estimating historical changes in land cover: North American croplands from 1850 to 1992. Glob Ecol Biogeogr 8(5):381–396

    Google Scholar 

  • Ramankutty N, Graumlich L, Achard F, Alves D, Chhabra A, DeFries RS, Foley JA, Geist H, Houghton RA, Goldewijk KK, Lambin EF (2006) Global land-cover change: recent progress, remaining challenges. In: Lambin EF, Geist H (eds) Land-use and land-cover change. Springer, Berlin, Heidelberg, pp 9–39

    Google Scholar 

  • Rastandeh A (2018) Urban biodiversity in an era of climate change: Towards an optimised landscape pattern in support of indigenous wildlife species in urban New Zealand. PhD thesis. Victoria University of Wellington, Wellington

    Google Scholar 

  • Riechers M, Balázsi Á, Abson D, Fischer J (2020) The influence of landscape change on multiple dimensions of human–nature connectedness. Ecol Soc 25(3):3

    Google Scholar 

  • Rosas CA, Engle DM, Shaw JH, Palmer MW (2008) Seed dispersal by Bisonbison in a tallgrass prairie. J Veg Sci 19(6):769–778

    Google Scholar 

  • Rosenzweig ML (2003) Win-win ecology: how the Earth species can survive in the midst of human enterprise. Oxford University Press, Oxford

    Google Scholar 

  • Samson F, Knopf F (1994) Prairie conservation in North America. Bioscience 44(6):418–421

    Google Scholar 

  • Schulte LA, Niemi J, Helmers MJ, Liebman M, Arbuckle JG, James DE, Kolka RK, O’Neal ME, Tomer MD, Tyndall JC, Asbjornsen H (2017) Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands. Proc Natl Acad Sci 114(42):11247–11252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sherrouse BC, Clement JM, Semmens DJ (2011) A GIS application for assessing, mapping, and quantifying the social values of ecosystem services. Appl Geogr 31(2):748–760

    Google Scholar 

  • Sieber R (2006) Public participation geographic information systems: a literature review and framework. Ann Assoc Am Geogr 96(3):491–507

    Google Scholar 

  • Slabbekoorn H, McGee J, Walsh EJ (2018) Effects of man-made sound on terrestrial mammals. In: Slabbekoorn H, Dooling R, Popper A, Fay R (eds) Effects of anthropogenic noise on animals. Springer Handbook of Auditory Research, vol 66. Springer, New York

    Google Scholar 

  • Song XP, Hansen MC, Stehman SV, Potapov PV, Tyukavina A, Vermote EF, Townshend JR (2018) Global land change from 1982 to 2016. Nature 560(7720):639–643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sorice MG, Kreuter UP, Wilcox BP, Fox WE III (2012) Classifying land-ownership motivations in central, Texas, USA: a first step in understanding drivers of large-scale land cover change. J Arid Environ 80:56–64

    Google Scholar 

  • Stoy PC, Ahmed S, Jarchow M, Rashford B, Swanson D, Albeke S, Bromley G, Brookshire ENJ, Dixon MD, Haggerty J, Miller P (2018) Opportunities and trade-offs among BECCS and the food, water, energy, biodiversity, and social systems nexus at regional scales. Bioscience 68(2):100–111

    Google Scholar 

  • Sullivan JJ, Molles LE (2016) Biodiversity monitoring by community-based restoration groups in New Zealand. Ecol Manag Restor 17(3):210–217

    Google Scholar 

  • Tarr NM (2019) Demonstrating a conceptual model for multispecies landscape pattern indices in landscape conservation. Landsc Ecol 34(9):2133–2147

    Google Scholar 

  • Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Cons 151(1):53–59

    Google Scholar 

  • Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20(1):171–197

    Google Scholar 

  • Urban MC (2015) Accelerating extinction risk from climate change. Science 348(6234):571–573

    CAS  PubMed  Google Scholar 

  • US Census Bureau (2018) American Community Survey: 2014–2018 ACS 5-Year Data Profile. Available from: https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles

  • U.S. Geological Survey (2018) Gap Analysis Project, U.S. Geological Survey—Gap Analysis Project Species Habitat Maps CONUS 2001: U.S. Geological Survey data release, Available from: https://doi.org/10.5066/F7V122T2

  • Walpole MJ, Leader-Williams N (2002) Tourism and flagship species in conservation. Biodivers Conserv 11:543–547

    Google Scholar 

  • Wilkins K, Pejchar L, Garvoille R (2019) Ecological and social consequences of bison reintroduction in Colorado. Conserv Sci Pract 1(2):e9

    Google Scholar 

  • Wimberly MC, Narem DM, Bauman PJ, Carlson BT, Ahlering MA (2018) Grassland connectivity in fragmented agricultural landscapes of the north-central United States. Biol Cons 217:121–130

    Google Scholar 

  • Włodarczyk-Marciniak R, Frankiewicz P, Krauze K (2020) Socio-cultural valuation of Polish agricultural landscape components by farmers and its consequences. J Rural Stud 74:190–200

    Google Scholar 

  • Wright CK, Wimberly MC (2013) Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proc Natl Acad Sci 110(10):4134–4139

    CAS  PubMed  PubMed Central  Google Scholar 

  • WWF, Grooten M, Almond REA (eds) (2018) Living Planet Report 2018: Aiming Higher. WWF, Gland

    Google Scholar 

  • WWF, Almond REA, Grooten M, Petersen T (eds) (2020) Living planet report 2020—bending the curve of biodiversity loss. WWF, Gland

    Google Scholar 

  • Zhang W, Yu Y, Wu X, Pereira P, Borja MEL (2020) Integrating preferences and social values for ecosystem services in local ecological management: a framework applied in Xiaojiang Basin, Yunnan province, China. Land Use Policy 91:104339

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation through the EPSCoR Track II cooperative agreement OIA-1632810 and NSF DBI-1560048. We thank Darius Semmens, Selena Ahmed, Julia Haggerty for feedback on the survey instrument and methods; Dylan Lewis, Tanner Hall, Jacinda Maassen, Jade Muller-Smit, Pamela Jackson, Daniel Whirlwind Soldier Petite, Mitchell Houska, Lori Peterson, Brad Frazier, Ann McGehrin, Rebecca Sistad for assistance conducting the surveys; and Andrew Baltensperger and Andrew Sechrist for assistance with the survey data management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Rastandeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastandeh, A., Jarchow, M. & Carnes, M. Incorporating social values and wildlife habitats for biodiversity conservation modeling in landscapes of the Great Plains. Landscape Ecol 36, 1137–1160 (2021). https://doi.org/10.1007/s10980-020-01190-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-020-01190-7

Keywords

Navigation