Skip to main content

Advertisement

Log in

Fire regimes and forest resilience: alternative vegetation states in the West African tropics

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Terrestrial ecosystems, including tropical forests, are hypothesized to have tipping points beyond which environmental change triggers rapid and radical shifts to novel alternative states.

Objective

We explored the overarching hypothesis that fire-mediated alternative stable states exist in the semi-deciduous tropical forest zone of Ghana, and that increased fire activity has pushed some forests to a new state in which a novel ecosystem with low tree density is maintained by fire.

Methods

We combined a 30-year time series of remotely-sensed data with field measurements to assess land cover trends, the effects of fire on forest vegetation, and the reciprocal effects of vegetation change on fire regimes, in four forest reserves. We analyzed precipitation trends to determine if shifts in vegetation and fire regime reflected a shift to a drier climate.

Results

Two of the reserves experienced forest loss, were impacted by frequent fires, and transitioned to a vegetation community dominated by shrubs and grasses, which was maintained by fire–vegetation feedbacks. The other two reserves experienced less fire, retained higher levels of forest cover, and resisted fire encroachment from surrounding agricultural areas. Precipitation remained relatively stable, suggesting a hysteresis effect in which different vegetation states and fire regimes coexist within a similar climate.

Conclusion

There is potential for human land use and fire to create novel and persistent non-forest vegetation communities in areas that are climatically suitable for tropical forests. These disturbance-mediated regime shifts should be taken into account when assessing future trajectories of forest landscape change in West Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adam KA, Pinard MA, Swaine MD (2006) Nine decades of regulating timber harvest from forest reserves and the status of residual forests in Ghana. Int For Rev 8(3):280–296

    Google Scholar 

  • Alo CA, Pontius RG (2008) Identifying systematic land-cover transitions using remote sensing and GIS: the fate of forests inside and outside protected areas of southwestern Ghana. Environ Plan B 35(2):280–295

    Article  Google Scholar 

  • Amissah L, Kyereh B, Agyeman VK (2011) Wildfires as dominant force driving farming systems in the forest transition zone of Ghana. Ghana J For 27(2):52–64

    Google Scholar 

  • Appiah M, Damnyag L, Blay D, Pappinen A (2010) Forest and agroecosystem fire management in Ghana. Mitig Adapt Strateg Glob Change 15(6):551–570

    Article  Google Scholar 

  • Aragão LEOC, Malhi Y, Roman-Cuesta RM, Saatchi S, Anderson LO, Shimabukuro YE (2007) Spatial patterns and fire response of recent Amazonian droughts. Geophys Res Lett. doi:10.1029/2006GL028946

    Google Scholar 

  • Baig MHA, Zhang L, Shuai T, Tong Q (2014) Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens Lett 5(5):423–431

    Article  Google Scholar 

  • Balch JK, Brando PM, Nepstad DC, Coe MT, Silvério D, Massad TJ, Davidson EA, Lefebvre P, Oliveira-Santos C, Rocha W, Cury RTS, Parsons A, Carvalho KS (2015) The susceptibility of southeastern Amazon Forests to fire: insights from a large-scale burn experiment. Bioscience 65(9):893–905

    Article  Google Scholar 

  • Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH, Fortelius M, Getz WM, Harte J, Hastings A, Marquet PA, Martinez ND, Mooers A, Roopnarine P, Vermeij G, Williams JW, Gillespie R, Kitzes J, Marshall C, Matzke N, Mindell DP, Revilla E, Smith AB (2012) Approaching a state shift in Earth/’s biosphere. Nature 486(7401):52–58

    Article  CAS  PubMed  Google Scholar 

  • Beisner BE, Haydon DT, Cuddington K (2003) Alternative stable states in ecology. Front Ecol Environ 1:376–382

    Article  Google Scholar 

  • Bestelmeyer BT, Ellison AM, Fraser WR, Gorman KB, Holbrook SJ, Laney CM, Ohman MD, Peters DPC, Pillsbury FC, Rassweiler A, Schmitt RJ, Sharma S (2011) Analysis of abrupt transitions in ecological systems. Ecosphere. doi:10.1890/ES11-00216

    Google Scholar 

  • Blay D, Appiah M, Damnyag L, Dwomoh FK, Luukkanen O, Pappinen A (2008) Involving local farmers in rehabilitation of degraded tropical forests: some lessons from Ghana. Environ Dev Sustain 10(4):503–518

    Article  Google Scholar 

  • Boulton C, Good P, Lenton T (2013) Early warning signals of simulated Amazon Rainforest dieback. Theor Ecol 6(3):373–384

    Article  Google Scholar 

  • Brando PM, Balch JK, Nepstad DC, Morton DC, Putz FE, Coe MT, Silvério D, Macedo MN, Davidson EA, Nóbrega CC, Alencar A, Soares-Filho BS (2014) Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc Natl Acad Sci USA 111(17):6347–6352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brook BW, Ellis EC, Perring MP, Mackay AW, Blomqvist L (2013) Does the terrestrial biosphere have planetary tipping points? Trends Ecol Evol 28(7):396–401

    Article  PubMed  Google Scholar 

  • Cochrane MA, Alencar A, Schulze MD, Souza CM, Nepstad DC, Lefebvre P, Davidson EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284(5421):1832–1835

    Article  CAS  PubMed  Google Scholar 

  • Cohen WB, Goward SN (2004) Landsat’s role in ecological applications of remote sensing. Bioscience 54(6):535–545

    Article  Google Scholar 

  • Cramer W, Bondeau A, Schaphoff S, Lucht W, Smith B, Sitch S (2004) Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philos Trans R Soc Lond B 359(1443):331–343

    Article  CAS  Google Scholar 

  • Crist EP (1985) A TM Tasseled Cap equivalent transformation for reflectance factor data. Remote Sens Environ 17(3):301–306

    Article  Google Scholar 

  • Dantas VdL, Batalha MA, Pausas JG (2013) Fire drives functional thresholds on the savanna–forest transition. Ecology 94(11):2454–2463

    Article  Google Scholar 

  • Dantas VdL, Hirota M, Oliveira RS, Pausas JG (2016) Disturbance maintains alternative biome states. Ecol Lett 19(1):12–19

    Article  Google Scholar 

  • Devisscher T, Malhi Y, Rojas Landívar VD, Oliveras I (2016) Understanding ecological transitions under recurrent wildfire: a case study in the seasonally dry tropical forests of the Chiquitania, Bolivia. For Ecol Manag 360:273–286

    Article  Google Scholar 

  • Giglio L, Schroeder W, Justice CO (2016) The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens Environ 178:31–41

    Article  Google Scholar 

  • Gocic M, Trajkovic S (2013) Analysis of changes in meteorological variables using Mann–Kendall and Sen’s slope estimator statistical tests in Serbia. Glob Planet Change 100:172–182

    Article  Google Scholar 

  • Goward S, Arvidson T, Williams D, Faundeen J, Irons J, Franks S (2006) Historical record of Landsat global coverage. Photogramm Eng Remote Sens 72(10):1155–1169

    Article  Google Scholar 

  • Hall JB, Swaine MD (1981) Distribution and ecology of vascular plants in tropical rainforest vegetation in Ghana. W Junk, The Hague

    Book  Google Scholar 

  • Hawthorne WD (1994) Fire damage and forest regeneration in Ghana. ODA Forestry Series 4. NRI, Chatham

  • Hawthorne WD, Abu-Juam M (1995) Forest protection in Ghana: with particular reference to vegetation and plant species. IUCN, Gland

    Google Scholar 

  • Hawthorne WD, Sheil D, Agyeman VK, Abu Juam M, Marshall CAM (2012) Logging scars in Ghanaian high forest: towards improved models for sustainable production. For Ecol Manag 271:27–36

    Article  Google Scholar 

  • Healey SP, Cohen WB, Zhiqiang Y, Krankina ON (2005) Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sens Environ 97(3):301–310

    Article  Google Scholar 

  • Higgins SI, Scheiter S (2012) Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488(7410):209–212

    Article  CAS  PubMed  Google Scholar 

  • Hilker T, Wulder MA, Coops NC, Linke J, McDermid G, Masek JG, Gao F, White JC (2009) A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens Environ 113(8):1613–1627

    Article  Google Scholar 

  • Hirota M, Holmgren M, Van Nes EH, Scheffer M (2011) Global resilience of tropical forest and savanna to critical transitions. Science 334(6053):232–235

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann WA, Geiger EL, Gotsch SG, Rossatto DR, Silva LCR, Lau OL, Haridasan M, Franco AC (2012) Ecological thresholds at the savanna–forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol Lett 15(7):759–768

    Article  PubMed  Google Scholar 

  • Honu YAK, Dang QL (2000) Responses of tree seedlings to the removal of Chromolaena odorata Linn. in a degraded forest in Ghana. For Ecol Manag 137(1–3):75–82

    Article  Google Scholar 

  • Huang C, Song K, Kim S, Townshend JRG, Davis P, Masek JG, Goward SN (2008) Use of a dark object concept and support vector machines to automate forest cover change analysis. Remote Sens Environ 112(3):970–985

    Article  Google Scholar 

  • Key CH, Benson NC (2006) Landscape assessment: Remote sensing of severity, the Normalized Burn Ratio. FIREMON: fire effects monitoring and inventory system. General Technical Report, RMRS-GTR-164-CD:LA25-LA51. USDA Forest Service, Rocky Mountain Research Station, Fort Collins

  • Malhi Y, Wright J (2004) Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos Trans R Soc B 359(1443):311–329

    Article  Google Scholar 

  • Marfo E (2010) Chainsaw milling in Ghana: context, drivers and impacts. Tropenbos International, Wageningen

    Google Scholar 

  • Masek JG, Vermote EF, Saleous NE, Wolfe R, Hall FG, Huemmrich KF, Gao F, Kutler J, Lim T-K (2006) A Landsat surface reflectance dataset for North America, 1990–2000. Geosci Remote Sens Lett IEEE 3(1):68–72

    Article  Google Scholar 

  • Norris K, Asase A, Collen B, Gockowksi J, Mason J, Phalan B, Wade A (2010) Biodiversity in a forest–agriculture mosaic—the changing face of West African rainforests. Biol Conserv 143(10):2341–2350

    Article  Google Scholar 

  • Numata I, Cochrane MA, Galvão LS (2011) Analyzing the impacts of frequency and severity of forest fire on the recovery of disturbed forest using Landsat time series and EO-1 hyperion in the southern Brazilian Amazon. Earth Interact 15(13):1–17

    Article  Google Scholar 

  • Odion DC, Moritz MA, DellaSala DA (2010) Alternative community states maintained by fire in the Klamath Mountains, USA. J Ecol 98(1):96–105

    Article  Google Scholar 

  • Orgle TK (1994) Ecology of burnt forests in Ghana. Dissertation, University of Aberdeen (United Kingdom), Aberdeen

  • Paritsis J, Veblen TT, Holz A (2015) Positive fire feedbacks contribute to shifts from Nothofagus pumilio forests to fire-prone shrublands in Patagonia. J Veg Sci 26(1):89–101

    Article  Google Scholar 

  • Petraitis P (2013) Multiple stable states in natural ecosystems. OUP Oxford, Oxford

    Book  Google Scholar 

  • Poorter L, Bongers F, Kouamé FN, Hawthorne WD (eds) (2004) Biodiversity of West African forests: an ecological atlas of woody plant species. CABI Publishing, Oxford

    Google Scholar 

  • Scheffer M (2009) Critical transitions in nature and society. Princeton University Press, Princeton

    Google Scholar 

  • Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461(7260):53–59

    Article  CAS  PubMed  Google Scholar 

  • Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18(12):648–656

    Article  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413(6856):591–596

    Article  CAS  PubMed  Google Scholar 

  • Sieber A, Kuemmerle T, Prishchepov AV, Wendland KJ, Baumann M, Radeloff VC, Baskin LM, Hostert P (2013) Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia. Remote Sens Environ 133:38–51

    Article  Google Scholar 

  • Silvério DV, Brando PM, Balch JK, Putz FE, Nepstad DC, Oliveira-Santos C, Bustamante MMC (2013) Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Philos Trans R Soc B. doi:10.1098/rstb.2012.0427

    Google Scholar 

  • Souza CM, Siqueira J, Sales M, Fonseca A, Ribeiro J, Numata I, Cochrane M, Barber C, Roberts D, Barlow J (2013) Ten-year Landsat classification of deforestation and forest degradation in the Brazilian Amazon. Remote Sens 5(11):5493–5513

    Article  Google Scholar 

  • Staver AC, Archibald S, Levin SA (2011) The global extent and determinants of savanna and forest as alternative biome states. Science 334(6053):230–232

    Article  CAS  PubMed  Google Scholar 

  • Swaine MD (1992) Characteristics of dry forest in West Africa and the influence of fire. J Veg Sci 3(3):365–374

    Article  Google Scholar 

  • Treue T (2001) Politics and economics of tropical high forest management: a case study of Ghana. Springer Netherlands. doi:10.1007/978-94-010-0706-1

  • Wimberly MC, Reilly MJ (2007) Assessment of fire severity and species diversity in the southern Appalachians using Landsat TM and ETM+ imagery. Remote Sens Environ 108(2):189–197

    Article  Google Scholar 

  • Wood S, Bowman DJS (2012) Alternative stable states and the role of fire–vegetation–soil feedbacks in the temperate wilderness of southwest Tasmania. Landscape Ecol 27(1):13–28

    Article  Google Scholar 

  • Zhu Z, Woodcock CE (2012) Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens Environ 118:83–94

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a NASA Earth and Space Science (NESSF) Fellowship awarded to Francis Dwomoh. We also acknowledge support from the USDA Forest Service, Southern Research Station through Cooperative Agreements 11‐CA‐11330136‐098 and 14-CA-11330136-015. Dr. Mark Cochrane, Dr. James Vogelmann, and two anonymous reviewers contributed helpful comments on earlier drafts of this manuscript. Many thanks to Dr. Zhihua Liu for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis K. Dwomoh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwomoh, F.K., Wimberly, M.C. Fire regimes and forest resilience: alternative vegetation states in the West African tropics. Landscape Ecol 32, 1849–1865 (2017). https://doi.org/10.1007/s10980-017-0553-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-017-0553-4

Keywords

Navigation