Skip to main content
Log in

Using airborne LiDAR to assess spatial heterogeneity in forest structure on Mount Kilimanjaro

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Field inventory plots which usually have small sizes of around 0.25–1 ha can only represent a sample of the much larger surrounding forest landscape. Based on airborne laser scanning (LiDAR) it has been shown for tropical forests that the bias in the selection of small field plots may hamper the extrapolation of structural forest attributes to larger spatial scales.

Objectives

We conducted a LiDAR study on tropical montane forest and evaluated the representativeness of chosen inventory plots with respect to key structural attributes.

Methods

We used six forest inventory and their surrounding landscape plots on Mount Kilimanjaro in Tanzania and analyzed the similarities for mean top-of-canopy height (TCH), aboveground biomass (AGB), gap fraction, and leaf-area index (LAI). We also analyzed the similarity in gap-size frequencies for the landscape plots.

Results

Mean biases between inventory and landscape plots were large reaching as much as 77% for gap fraction, 22% for LAI or 15% for AGB. Despite spatial heterogeneity of the landscape, gap-size frequency distributions were remarkably similar between the landscape plots.

Conclusions

The study indicates that biases in field studies of forest structure may be strong. Even when mean values were similar between inventory and landscape plots, the mostly non-normally distributed probability densities of the forest variable indicated a considerable sampling error of the small field plot to approximate the forest variable in the surrounding landscape. This poses difficulties for the spatial extrapolation of forest structural attributes and for assessing biomass or carbon fluxes at larger regional scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asner GP, Scurlock JMO, Hicke JA (2003) Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecol Biogeogr 12(3):191–205

    Article  Google Scholar 

  • Asner GP, Powell GVN, Mascaro J, Knapp DE, Clark JK, Jacobson J, Kennedy-Bowdoin T, Balaji A, Paez-Acosta G, Victoria E, Secada L (2010) High-resolution forest carbon stocks and emissions in the Amazon. Proc Natl Acad Sci USA 107(38):16738–16742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asner GP, Kellner JR, Kennedy-Bowdoin T, Knapp DE, Anderson C, Martin RE (2013a) Forest canopy gap distributions in the Southern Peruvian Amazon. PLoS ONE 8(4):e60875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asner GP, Mascaro J, Anderson C, Knapp DE, Martin RE, Kennedy-Bowdoin T, van Breugel M, Davies S, Hall JS, Muller-Landau HC, Potvin C (2013b) High-fidelity national carbon mapping for resource management and REDD+. Carbon Balance Manag 8(7):1–14

    Google Scholar 

  • Asner GP, Mascaro J (2014) Mapping tropical forest carbon: calibrating plot estimates to a simple LiDAR metric. Remote Sens Environ 140:614–624

    Article  Google Scholar 

  • Asner GP, Sousan S, Knapp DE, Selmants PC, Martin RE, Hughes RF, Giardina CP (2016) Rapid forest carbon assessments of oceanic islands: a case study of the Hawaiian archipelago. Carbon Balance Manag 11(1):1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonnet S, Gaulton R, Lehaire F, Lejeune P (2015) Canopy gap mapping from airborne laser scanning: an assessment of the positional and geometrical accuracy. Remote Sens-Basel 7(9):11267

    Article  Google Scholar 

  • Boyd DS, Hill RA, Hopkinson C, Baker TR (2013) Landscape-scale forest disturbance regimes in southern Peruvian Amazonia. Ecol Appl 23(7):1588–1602

    Article  PubMed  Google Scholar 

  • Brown C, Burslem DF, Illian JB, Bao L, Brockelman W, Cao M, Chang LW, Dattaraja HS, Davies S, Gunatilleke CV, Gunatilleke IA (2013) Multispecies coexistence of trees in tropical forests: spatial signals of topographic niche differentiation increase with environmental heterogeneity. Proc R Soc Lond B Biol Sci 280(1764):20130502

    Article  CAS  Google Scholar 

  • Bustamante M, Roitman I, Aide TM, Alencar A, Anderson LO, Aragão L, Asner GP, Barlow J, Berenguer E, Chambers J, Costa MH (2016) Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Glob Change Biol 22(1):92–109

    Article  Google Scholar 

  • Detto M, Asner GP, Muller-Landau HC, Sonnentag O (2015) Spatial variability in tropical forest leaf area density from multireturn lidar and modeling. J Geophys Res 120(2):294–309

    Article  Google Scholar 

  • Dislich C, Huth A (2012) Modelling the impact of shallow landslides on forest structure in tropical montane forests. Ecol Model 239:40–53

    Article  Google Scholar 

  • Enquist BJ, West GB, Brown JH (2009) Extensions and evaluations of a general quantitative theory of forest structure and dynamics. Proc Natl Acad Sci USA 106(17):7046–7051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ensslin A, Rutten G, Pommer U, Zimmermann R, Hemp A, Fischer M (2015) Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere 6(3):1–15

    Article  Google Scholar 

  • Espírito-Santo FD, Gloor M, Keller M, Malhi Y, Saatchi S, Nelson B, Junior RC, Pereira C, Lloyd J, Frolking S, Palace M (2014) Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nat Commun 5:3434

    PubMed  PubMed Central  Google Scholar 

  • Farrior CE, Bohlman SA, Hubbell S, Pacala SW (2016) Dominance of the suppressed: power-law size structure in tropical forests. Science 351(6269):155–157

    Article  CAS  PubMed  Google Scholar 

  • Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S (2010) Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol 11(6):473–485

    Article  Google Scholar 

  • Fischer R, Ensslin A, Rutten G, Fischer M, Costa DS, Kleyer M, Hemp A, Paulick S, Huth A (2015) Simulating carbon stocks and fluxes of an African Tropical Montane forest with an individual-based forest model. Plos ONE 10(4):e0123300

    Article  PubMed  PubMed Central  Google Scholar 

  • Getzin S, Dean C, He FL, Trofymow JA, Wiegand K, Wiegand T (2006) Spatial patterns and competition of tree species in a Douglas-fir chronosequence on Vancouver Island. Ecography 29(5):671–682

    Article  Google Scholar 

  • Getzin S, Wiegand T, Wiegand K, He F (2008) Heterogeneity influences spatial patterns and demographics in forest stands. J Ecol 96(4):807–820

    Article  Google Scholar 

  • Getzin S, Worbes M, Wiegand T, Wiegand K (2011) Size dominance regulates tree spacing more than competition within height classes in tropical Cameroon. J Trop Ecol 27(1):93–102

    Article  Google Scholar 

  • Getzin S, Nuske RS, Wiegand K (2014) Using unmanned aerial vehicles (uav) to quantify spatial gap patterns in forests. Remote Sens-Basel 6(8):6988–7004

    Article  Google Scholar 

  • Gossner MM, Getzin S, Lange M, Pašalić E, Türke M, Wiegand K, Weisser WW (2013) The importance of heterogeneity revisited from a multiscale and multitaxa approach. Biol Conserv 166:212–220

    Article  Google Scholar 

  • Harding DJ, Lefsky MA, Parker GG, Blair JB (2001) Laser altimeter canopy height profiles—methods and validation for closed-canopy, broadleaf forests. Remote Sens Environ 76(3):283–297

    Article  Google Scholar 

  • Hemp A (2006) Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecol 184(1):27–42

    Article  Google Scholar 

  • Hewitt JE, Thrush SF, Dayton PK, Bonsdorff E (2007) The effect of spatial and temporal heterogeneity on the design and analysis of empirical studies of scale-dependent systems. Am Nat 169(3):398–408

    PubMed  Google Scholar 

  • Kellner JR, Clark DB, Hubbell SP (2009) Pervasive canopy dynamics produce short-term stability in a tropical rain forest landscape. Ecol Lett 12(2):155–164

    Article  PubMed  Google Scholar 

  • Kent R, Lindsell JA, Laurin GV, Valentini R, Coomes DA (2015) Airborne LiDAR detects selectively logged Tropical forest even in an advanced stage of recovery. Remote Sens-Basel 7(7):8348–8367

    Article  Google Scholar 

  • Lobo E, Dalling JW (2014) Spatial scale and sampling resolution affect measures of gap disturbance in a lowland tropical forest: implications for understanding forest regeneration and carbon storage. Proc R Soc Lond B Biol Sci 281(1778):20133218

    Article  Google Scholar 

  • Martin AR, Thomas SC (2011) A reassessment of carbon content in tropical trees. PLoS ONE 6(8):e23533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marvin DC, Asner GP (2016) Branchfall dominates annual carbon flux across lowland Amazonian forests. Environ Res Lett 11(9):1–11

    Article  Google Scholar 

  • Marvin DC, Asner GP, Knapp DE, Anderson CB, Martin RE, Sinca F, Tupayachi R (2014) Amazonian landscapes and the bias in field studies of forest structure and biomass. Proc Natl Acad Sci USA 111(48):E5224–E5232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marvin DC, Koh LP, Lynam AJ, Wich S, Davies AB, Krishnamurthy R, Stokes E, Starkey R, Asner GP (2016) Integrating technologies for scalable ecology and conservation. Glob Ecol Conserv 7:262–275

    Article  Google Scholar 

  • Mascaro J, Detto M, Asner GP, Muller-Landau HC (2011) Evaluating uncertainty in mapping forest carbon with airborne LiDAR. Remote Sens Environ 115(12):3770–3774

    Article  Google Scholar 

  • McLean KA, Trainor AM, Asner GP, Crofoot MC, Hopkins ME, Campbell CJ, Martin RE, Knapp DE, Jansen PA (2016) Movement patterns of three arboreal primates in a Neotropical moist forest explained by LiDAR-estimated canopy structure. Landscape Ecol 31(8):1849–1862

    Article  Google Scholar 

  • Molina PX, Asner GP, Abadia MF, Manrique JCO, Diez LAS, Valencia R (2016) Spatially-explicit testing of a general aboveground carbon density estimation model in a Western Amazonian forest using Airborne LiDAR. Remote Sens-Basel 8(1):9

    Article  Google Scholar 

  • Montgomery R, Chazdon R (2002) Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps. Oecologia 131(2):165–174

    Article  CAS  PubMed  Google Scholar 

  • Punchi-Manage R, Getzin S, Wiegand T, Kanagaraj R, Savitri Gunatilleke CV, Nimal Gunatilleke IA, Wiegand K, Huth A (2013) Effects of topography on structuring local species assemblages in a Sri Lankan mixed dipterocarp forest. J Ecol 101(1):149–160

    Article  Google Scholar 

  • Rutten G, Ensslin A, Hemp A, Fischer M (2015) Vertical and horizontal vegetation structure across natural and modified habitat types at Mount Kilimanjaro. PLoS ONE 10(9):e0138822

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang H, Dubayah R, Swatantran A, Hofton M, Sheldon S, Clark DB, Blair B (2012) Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica. Remote Sens Environ 124:242–250

    Article  Google Scholar 

  • Taubert F, Jahn MW, Dobner HJ, Wiegand T, Huth A (2015) The structure of tropical forests and sphere packings. Proc Natl Acad Sci USA 112(49):15125–15129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Team RDC (2016) R: a language and environment for statistical computing. Austria, Vienna

    Google Scholar 

  • Torimaru T, Itaya A, Yamamoto S-I (2012) Quantification of repeated gap formation events and their spatial patterns in three types of old-growth forests: analysis of long-term canopy dynamics using aerial photographs and digital surface models. For Ecol Manag 284:1–11

    Article  Google Scholar 

  • Vaglio Laurin G, Puletti N, Chen Q, Corona P, Papale D, Valentini R (2016) Above ground biomass and tree species richness estimation with airborne lidar in tropical Ghana forests. Int J Appl Earth Obs Geoinf 52:371–379

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Nauss from the University of Marburg for providing the LiDAR data. The study was funded by the German Research Foundation (DFG) and is part of the DFG research unit FOR1246 “Kilimanjaro ecosystems under global change: linking biodiversity, biotic interactions and biogeochemical ecosystem processes”. AH and RF were supported by the Helmholtz-Alliance Remote Sensing and Earth System Dynamics. NK was funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) under the funding reference 50EE1416. We thank two reviewers for their constructive comments on our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Getzin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 780 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Getzin, S., Fischer, R., Knapp, N. et al. Using airborne LiDAR to assess spatial heterogeneity in forest structure on Mount Kilimanjaro. Landscape Ecol 32, 1881–1894 (2017). https://doi.org/10.1007/s10980-017-0550-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-017-0550-7

Keywords

Navigation