Skip to main content

Advertisement

Log in

Spatial relationship between biodiversity and geodiversity across a gradient of land-use intensity in high-latitude landscapes

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

‘Conserving Nature’s stage’ has been advanced as an important conservation principle because of known links between biodiversity and abiotic environmental diversity, especially in sensitive high-latitude environments and at the landscape scale. However these links have not been examined across gradients of human impact on the landscape.

Objectives

To (1) analyze the relationships between land-use intensity and both landscape-scale biodiversity and geodiversity, and (2) assess the contributions of geodiversity, climate and spatial variables to explaining vascular plant species richness in landscapes of low, moderate and high human impact.

Methods

We used generalized additive models (GAMs) to analyze relationships between land-use intensity and both geodiversity (geological, geomorphological and hydrological richness) and plant species richness in 6191 1-km2 grid squares across Finland. We used linear regression-based variation partitioning (VP) to assess contributions of climate, geodiversity and spatial variable groups to accounting for spatial variation in species richness.

Results

In GAMs, geodiversity correlated negatively, and plant species richness positively, with land-use intensity. Both relationships were non-linear. In VP, geodiversity best accounted for species richness in areas of moderate to high human impact. These overall contributions were mainly due to variation explained jointly with climate, which dominated the models. Independent geodiversity contributions were highest in pristine environments, but low throughout.

Conclusions

Human action increases biodiversity but may reduce geodiversity, at landscape scale in high-latitude environments. Better understanding of the connections between biodiversity and abiotic environment along changing land-use gradients is essential in developing sustainable measures to conserve biodiversity under global change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aalto J, Luoto M (2014) Integrating climate and local factors for geomorphological distribution models. Earth Surf Process Landf 39:1729–1740

    Article  Google Scholar 

  • Alexandrowicz Z, Margielewski W (2010) Impact of mass movements on geo- and biodiversity in the Polish Outer (Flysch) Carpathians. Geomorphology 123:290–304

    Article  Google Scholar 

  • Anderson MG, Ferree CE (2010) Conserving the stage: climate change and the geophysical underpinnings of species diversity. PLoS ONE 5:e11554

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson MJ, Gribble NA (1998) Partitioning the variation among spatial, temporal and environmental components in a multivariate data set. Aust J Ecol 23:158–167

    Article  Google Scholar 

  • Atlas of Finland (1986) Relief and landforms. National Board of Survey and Geographical Society of Finland, Helsinki

    Google Scholar 

  • Atlas of Finland (1990a) Geology. National Board of Survey and Geographical Society of Finland, Helsinki

    Google Scholar 

  • Atlas of Finland (1990b) Surficial deposits. National Board of Survey and Geographical Society of Finland, Helsinki

    Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Brown DG, Johnson KM, Loveland TR, Theobald DM (2005) Rural land-use trends in the conterminous United States, 1950–2000. Ecol Appl 15:1851–1863

    Article  Google Scholar 

  • Butchart SHM, Walpole M, Collen B (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168

    Article  CAS  PubMed  Google Scholar 

  • Comer PJ, Pressey RL, Hunter MLJR, Schloss CA, Buttrick SC, Heller NE, Tirpak JM, Faith DP, Cross MS, Shaffer ML (2015) Incorporating geodiversity into conservation decisions. Conserv Biol 29:692–701

    Article  PubMed  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    Article  CAS  PubMed  Google Scholar 

  • Dray S, Pelissier R, Couteron P, Fortin MJ, Legendre P, Peres- Neto PR et al (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecol Monogr 82:257–275

    Article  Google Scholar 

  • Erikstad L (2013) Geoheritage and geodiversity management—the questions for tomorrow. Proc Geol Assoc 124:713–719

    Article  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112

    Article  PubMed  Google Scholar 

  • Field R, Hawkins BA, Cornell HV et al (2009) Spatial species-richness gradients across scales: a meta-analysis. J Biogeogr 36:132–147

    Article  Google Scholar 

  • Finnish Environment Institute (2013a) Nature conservation areas. http://avaa.tdata.fi/web/paituli

  • Finnish Environment Institute (2013b). Ground water areas. http://avaa.tdata.fi/web/paituli

  • Finnish Environment Institute (2015). River network. http://avaa.tdata.fi/web/paituli

  • Flynn DFB, Gogol-Prokurat M, Nogeire T et al (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33

    Article  PubMed  Google Scholar 

  • Foley JA, DeFries R, Asner GP (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  PubMed  Google Scholar 

  • Garbarino M, Lingua E, Weisberg PJ, Bottero A, Meloni F, Motta R (2013) Land-use history and topographic gradients as driving factors of subalpine Larix decidua forests. Landscape Ecol 28:805–817

    Article  Google Scholar 

  • Gordon JE, Barron HF (2013) The role of geodiversity in delivering ecosystem services and benefits in Scotland. Scott J Geol 49:41–58

    Article  Google Scholar 

  • Gray M (2008) Geodiversity: developing the paradigm. Proc Geol Assoc 119:287–298

    Article  Google Scholar 

  • Gray M (2013) Geodiversity: valuing and conserving abiotic nature, 2nd edn. Wiley-Blackwell, Chichester

    Google Scholar 

  • Gray M, Gordon JE, Brown EJ (2013) Geodiversity and the ecosystem approach: the contribution of geoscience in delivering integrated environmental management. Proc Geol Assoc 124:659–673

    Article  Google Scholar 

  • GSF (Geological Survey of Finland) (2010a) Bedrock of Finland 1:200 000. GSF, Espoo. http://hakku.gtk.fi/en/locations/search

  • GSF (Geological Survey of Finland) (2010b) Superficial Deposits of Finland 1:200 000. GSF, Espoo. http://hakku.gtk.fi/en/locations/search

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman and Hall, London

    Google Scholar 

  • Hill MO, Roy DB, Thompson K (2002) Hemeroby, urbanity and ruderality: bioindicators of disturbance and human impact. J Appl Ecol 39:708–720

    Article  Google Scholar 

  • Hjort J, Luoto M (2010) Geodiversity of high-latitude landscapes in northern Finland. Geomorphology 115:109–116

    Article  Google Scholar 

  • Hjort J, Luoto M (2012) Can geodiversity be predicted from space? Geomorphology 153–154:74–80

    Article  Google Scholar 

  • Hjort J, Heikkinen RK, Luoto M (2012) Inclusion of explicit measures of geodiversity improve biodiversity models in a boreal landscape. Biodivers Conserv 21:3487–3506

    Article  Google Scholar 

  • Hjort J, Gordon JE, Gray M, Hunter ML (2015) Why geodiversity matters in valuing nature’s stage. Conserv Biol 29:630–639

    Article  PubMed  Google Scholar 

  • IPCC (2013) Climate change 2013. Fifth assessment report. World Meteorological Organization, Geneva

    Google Scholar 

  • Jalas J (1955) Hemerobe und hemerochore Pflanzenarten. Ein terminologischer Reformversuch. [Hemerobic and hemerochoric plant species. An attempt at terminological reform]. Acta Soc pro Fauna Flora Fenn 72:1–15

    Google Scholar 

  • Kougioumoutzis K, Tiniakou A (2015) Ecological factors driving plant species diversity in the South Aegean Volcanic Arc and other central Aegean islands. Plant Ecol Divers 8:173–186

    Article  Google Scholar 

  • Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci USA 104:5925–5930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kühn I, Klotz S (2006) Urbanization and homogenization—comparing the floras of urban and rural areas in Germany. Biol Cons 127:292–300

    Article  Google Scholar 

  • Lampinen R, Lahti T, Heikkinen M (2012) Atlas of the distribution of vascular plants in Finland 2011. University of Helsinki, Finnish Museum of Natural History, Helsinki. Distribution maps at http://www.luomus.fi/kasviatlas

  • Landsberg HE (1981) The urban climate. Academic Press, London

    Google Scholar 

  • Lawler JJ, Ackerly DD, Albano CM et al (2015) The theory behind, and the challenges of, conserving nature’s stage in a time of rapid change. Conserv Biol 29:618–629

    Article  PubMed  Google Scholar 

  • le Roux PC, Luoto M (2014) Earth surface processes drive the richness, composition and occurrence of plant species in an arctic–alpine environment. J Veg Sci 25:45–54

    Article  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical Ecology, 3rd edn. Elsevier, Oxford

    Google Scholar 

  • Legendre P, Borcard D, Blanchet FG, Dray S (2013) PCNM: MEM spatial eigenfunction and principal coordinate analyses. R package version 2.1-2/r109. http://R-Forge.R-project.org/projects/sedar/

  • Lewis SL, Maslin MA (2015) Defining the Anthropocene. Nature 519:171–180

    Article  CAS  PubMed  Google Scholar 

  • Lindenmayer D, Hobbs RJ, Montague-Drake R et al (2008) A checklist for ecological management of landscapes for conservation. Ecol Lett 11:78–91

    PubMed  Google Scholar 

  • Luke (Natural Resources Institute Finland) (2011) Multi-source national forest inventory (MS-NFI). http://www.metla.fi/ohjelma/vmi/vmi-moni-en.htm

  • Matthews E (1983) Global vegetation and land use: new high-resolution data bases for climate studies. J Climate Appl Meteorol 22:474–487

    Article  Google Scholar 

  • Matthews TJ (2014) Integrating geoconservation and biodiversity conservation: theoretical foundations and conservation recommendations in a European Union context. Geoheritage 6:57–70

    Article  Google Scholar 

  • McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606

    Article  Google Scholar 

  • McKinney ML (2002) Urbanization, biodiversity, and conservation. Bioscience 52:883–890

    Article  Google Scholar 

  • McKinney ML (2004) Measuring floristic homogenization by non-native plants in North America. Glob Ecol Biogeogr 13:47–53

    Article  Google Scholar 

  • McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453

    Article  CAS  PubMed  Google Scholar 

  • Mutke J, Barthlott W (2005) Patterns of vascular plant diversity at continental to global scales. Biologiske Skrifter 55:521–531

    Google Scholar 

  • Newbold T, Hudson LN, Hill SLL et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50

    Article  CAS  PubMed  Google Scholar 

  • Nichols WF, Killingbeck KT, August PV (1998) The influence of geomorphological heterogeneity on biodiversity II. A landscape perspective. Conservation Biology 12:371–379

    Article  Google Scholar 

  • NLS (National Land Survey of Finland) (2000) Digital Elevation Model. NLS, Helsinki. http://avaa.tdata.fi/web/paituli

  • NLS (National Land Survey of Finland) (2012) Topographic database. http://avaa.tdata.fi/web/paituli

  • Paracchini ML, Capitani C (2011) Implementation of a EU wide indicator for the rural-agrarian landscape. JRC scientific and techincal reports (EUR25114EN-2011). Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Parks K, Mulligan M (2010) On the relationship between a resource based measure of geodiversity and broad scale biodiversity patterns. Biodivers Conserv 19:2751–2766

    Article  Google Scholar 

  • Pellitero R, González-Amuchastegui MJ, Ruiz-Flaño P, Serrano E (2011) Geodiversity and geomorphosite assessment applied to a natural protected area: the Ebro and Rudron Gorges Natural Park (Spain). Geoheritage 3:163–174

    Article  Google Scholar 

  • Pellitero R, Manosso FC, Serrano E (2015) Mid- and large-scale geodiversity calculation in Fuentes Carrionas (NW Spain) and Serra do Cadeado (Paraná, Brazil): methodology and applicaton for land management. Geogr Ann A97:219–235

    Article  Google Scholar 

  • Pereira DI, Pereira P, Brilha J (2013) Geodiversity assessment of Paraná State (Brazil): an innovative approach. Environ Manag 52:541–552

    Article  Google Scholar 

  • Peres-Neto PR, Legendre P (2010) Estimating and controlling for spatial structure in the study of ecological communities. Glob Ecol Biogeogr 19:174–184

    Article  Google Scholar 

  • Peres-Neto PR, Leibold MA, Dray S (2012) Assessing the effects of spatial contingency and environmental filtering on metacommunity phylogenetics. Ecology 93:14–30

    Article  Google Scholar 

  • Pirinen P, Simola H, Aalto J et al (2012) Climatological statistics of Finland 1981–2010. Finn Meterol Inst Rep 1:1–96

    Google Scholar 

  • Post E, Forchhammer MC, Bret-Harte MS et al (2009) Ecological dynamics across the Arctic associated with recent climate change. Science 325:1355–1358

    Article  CAS  PubMed  Google Scholar 

  • Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 405:212–219

    Article  CAS  PubMed  Google Scholar 

  • Räsänen A, Kuitunen M, Hjort J et al (2016) The role of landscape, topography, and geodiversity in explaining vascular plant species richness in a fragmented landscape. Boreal Environ Res 21:53–70

    Google Scholar 

  • Ricketts T, Imhoff M (2003) Biodiversity, urban areas, and agriculture: locating priority ecoregions for conservation. Conserv Ecol 8(2):1

    Article  Google Scholar 

  • Seppälä M (2005) Glacially sculptrured landforms. In: Seppälä M (ed) The physical geography of Fennoscandia. Oxford University Press, New York, pp 35–57

    Google Scholar 

  • Serrano E, Ruiz-Flaño P, Arroyo P (2009) Geodiversity assessment in a rural landscape: Tiermes-Caracena area (Soria, Spain). Mem Descr Carta Geol d’It 87:173–180

    Google Scholar 

  • Skov F, Svenning J-C (2004) Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography 27:366–380

    Article  Google Scholar 

  • Szilárd CP-S (2009) Degree of human transformation of landscapes: a case study from Hungary. Foldrajzi Ert Geogr Bull 58:91–99

    Google Scholar 

  • Thuiller W, Midgley G, Rougeti M, Cowling R (2006) Predicting patterns of plant species richness in megadiverse South Africa. Ecography 29:733–744

    Article  Google Scholar 

  • Tukiainen H, Bailey JJ, Kangas K, Field R, Hjort J (2016) Combining geodiversity with climate and topography to account for threatened species richness. Conserv Biol 31:364–375

    Article  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • von der Lippe M, Kowarik I (2008) Do cities export biodiversity? Traffic as dispersal vector across urban-rural gradients. Divers Distrib 14:18–25

    Article  Google Scholar 

  • Walz U, Stein C (2014) Indicators of hemeroby for the monitoring of landscapes in Germany. J Nat Conserv 22:279–289

    Article  Google Scholar 

  • Wilson MC, Chen XY, Corlett RT et al (2016) Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landscape Ecol 31:219–227

    Article  Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with R. Chapman and Hall/CRC Press, Boca Raton

    Google Scholar 

  • Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J Royal Stat Soc (B) 73:3–36

    Article  Google Scholar 

  • Wu JG, Jenerette GD, Buyantuyev A, Redman CL (2011) Quantifying spatiotemporal patterns of urbanization: the case of the two fastest growing metropolitan regions in the United States. Ecol Complex 8:1–8

    Article  Google Scholar 

  • Young OR (2012) Arctic tipping points: governance in turbulent times. Ambio 41:75–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziska LH, Bunce JA, Goins EW (2004) Characterization of an urban–rural CO2/temperature gradient and associated changes in initial plant productivity during secondary succession. Oecologia 139:454–458

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank handling editor and two anonymous referees for valuable comments on the manuscript. We thank E. Hanski for the classification of the bedrock types. HT was supported by Kone Foundation and JH by the Academy of Finland (Project number 285040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Tukiainen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tukiainen, H., Alahuhta, J., Field, R. et al. Spatial relationship between biodiversity and geodiversity across a gradient of land-use intensity in high-latitude landscapes. Landscape Ecol 32, 1049–1063 (2017). https://doi.org/10.1007/s10980-017-0508-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-017-0508-9

Keywords

Navigation