Skip to main content
Log in

Non-random patterns of vegetation clearing and potential biases in studies of habitat area effects

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Native vegetation extent is often a proxy for habitat area in studies of human-modified landscapes. However, the loss and retention of native vegetation is rarely random among landscapes. Instead, the extent of native vegetation in landscapes may be correlated with abiotic factors, thereby obscuring or distorting relationships between ecological phenomena and area.

Objectives

We asked: (1) how has the potential for non-random vegetation loss to confound area effects been addressed in the landscape ecology literature? (2) Are consistent patterns of non-random vegetation loss and retention evident from modified regions of two countries?

Methods

We reviewed 118 papers that related area to an ecological response, to determine whether potential biases associated with non-random vegetation loss and retention were considered. We then analysed ~18,000 100 km2 landscape units in Australia and South Africa to identify how different abiotic factors correlate with the extent of native vegetation retained in those landscapes.

Results

Only 21% of the studies we reviewed explicitly or implicitly considered spatial biases in vegetation clearing. Yet, across modified regions of Australia and South Africa, landscape-scale native vegetation extent was consistently and often strongly related to abiotic factors, particularly soil properties and topographic variability.

Conclusion

Patterns of vegetation clearing and retention commonly reflect underlying abiotic heterogeneity. These biases, which are infrequently highlighted in studies focussing on area effects, have implications for how we assess the importance of vegetation extent for species and assemblages. Failure to account for correlates of vegetation extent risks erroneous area-based conservation prescriptions in human-modified environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrén H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71(3):355–366

    Article  Google Scholar 

  • Baiphethi M, Jacobs P (2009) The contribution of subsistence farming to food security in South Africa. Agrekon 48(4):459–482

    Article  Google Scholar 

  • Basham R, Law B, Banks P (2011) Microbats in a ‘leafy’ urban landscape: are they persisting, and what factors influence their presence? Austral Ecol 36(6):663–678

    Google Scholar 

  • Beale CM, Lennon JJ, Yearsley JM, Brewer MJ, Elston DA (2010) Regression analysis of spatial data. Ecol Lett 13(2):246–264

    Article  PubMed  Google Scholar 

  • Bennett AF, Watson DM (2011) Declining woodland birds—is our science making a difference? Emu 111(1):i–vi

    Article  Google Scholar 

  • Beyer HL (2012) Geospatial modelling environment (version 0.7.2.1) (software). http://www.spatialecology.com/gme

  • Carrara E, Arroyo-Rodriguez V, Vega-Rivera JH, Schondube JE, de Freitas SM, Fahrig L (2015) Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. Biol Conserv 184:117–126

    Article  Google Scholar 

  • Connor EF, McCoy ED (1979) The statistics and biology of the species-area relationship. Am Nat 113(6):791–833

    Article  Google Scholar 

  • Cowling RM, Pressey RL (2003) Introduction to systematic conservation planning in the Cape Floristic Region. Biol Conserv 112(1):1–13

    Article  Google Scholar 

  • Crouzeilles R, Prevedello JA, Figueiredo MdSL, Lorini ML, Grelle CEV (2014) The effects of the number, size and isolation of patches along a gradient of native vegetation cover: how can we increment habitat availability? Landscape Ecol 29(3):479–489

    Article  Google Scholar 

  • Department of the Environment (2012a) Interim biogeographic regionalisation for Australia (IBRA), Version 7 (Regions). Department of the Environment, Canberra. http://www.environment.gov.au/topics/land/national-reserve-system/science-maps-and-data/australias-bioregions-ibra. Accessed 16 Sept 2013

  • Department of the Environment (2012b) National vegetation information system (NVIS). Department of the Environment, Canberra. http://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system. Accessed 15 Oct 2014

  • Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12(1):53–64

    Article  Google Scholar 

  • Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling D, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30(5):609–628

    Article  Google Scholar 

  • Drinnan IN (2005) The search for fragmentation thresholds in a southern Sydney suburb. Biol Conserv 124(3):339–349

    Article  Google Scholar 

  • ESRI (2012) ArcMap Version 10.1 (software). Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40(9):1649–1663

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16(3):265–280

    Article  Google Scholar 

  • Hadley AS, Frey SJK, Robinson WD, Kress WJ, Betts MG (2014) Tropical forest fragmentation limits pollination of a keystone understory herb. Ecology 95(8):2202–2212

    Article  PubMed  Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396(6706):41–49

    Article  CAS  Google Scholar 

  • Hanski I (2015) Habitat fragmentation and species richness. J Biogeogr 42:989–993

    Article  Google Scholar 

  • Harrisson KA, Pavlova A, Amos JN, Takeuchi N, Lill A, Radford JQ, Sunnucks P (2012) Fine-scale effects of habitat loss and fragmentation despite large-scale gene flow for some regionally declining woodland bird species. Landscape Ecol 27(6):813–827

    Article  Google Scholar 

  • Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84(12):3105–3117

    Article  Google Scholar 

  • Hazelton P, Murphy BW (2007) Interpreting soil test results: what do all the numbers mean?. CSIRO Publishing, Melbourne

    Google Scholar 

  • Hengl T, de Jesus JM, MacMillan RA, Batjes NH, Heuvelink GBM, Ribeiro E, Samuel-Rosa A, Kempen B, Leenaars JGB, Walsh MG, Gonzalez MR (2014) SoilGrids1 km—global soil information based on automated mapping. PLoS ONE 9(8):e105992

    Article  PubMed  PubMed Central  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978

    Article  Google Scholar 

  • ISRIC—World Soil Information (2013) SoilGrids: an automated system for global soil mapping. http://soilgrids1km.isric.org. Accessed 18 June 2014

  • Januchowski SR, McAlpine CA, Callaghan JG, Griffin CB, Bowen M, Mitchell D, Lunney D (2008) Identifying multiscale habitat factors influencing koala (Phascolarctos cinereus) occurrence and management in Ballarat, Victoria, Australia. Ecol Manag Restor 9(2):134–142

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe version 4, available from CGIAR-CSI SRTM 90 m Database. http://srtm.csi.cgiar.org/. Accessed 03 April 2014

  • Kirsten J, Moldenhauer W (2006) Measurement and analysis of rural household income in a dualistic economy: the case of South Africa. Agrekon 45(1):60–77

    Article  Google Scholar 

  • Kisel Y, McInnes L, Toomey NH, Orme CDL (2011) How diversification rates and diversity limits combine to create large-scale species-area relationships. Philos Trans R Soc Lond Ser B Biol Sci 366(1577):2514–2525

    Article  Google Scholar 

  • Lal R (2000) Soil management in the developing countries. Soil Sci 165(1):57–72

    Article  CAS  Google Scholar 

  • Laurance WF (2008) Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol Conserv 141(7):1731–1744

    Article  Google Scholar 

  • Laurance WF, Camargo JLC, Luizão RCC, Laurance SG, Pimm SL, Bruna EM, Stouffer PC, Williamson GB, Benítez-Malvido J, Vasconcelos HL, Van Houtan KS, Zartman CE, Boyle SA, Didham RK, Andrade A, Lovejoy TE (2011) The fate of Amazonian forest fragments: a 32-year investigation. Biol Conserv 144(1):56–67

    Article  Google Scholar 

  • Lima MM, Mariano-Neto E (2014) Extinction thresholds for Sapotaceae due to forest cover in Atlantic Forest landscapes. For Ecol Manag 312:260–270

    Article  Google Scholar 

  • Lindenmayer D, Bennett AF, Hobbs R (2010) An overview of the ecology, management and conservation of Australia’s temperate woodlands. Ecol Manag Restor 11(3):201–209

    Article  Google Scholar 

  • Lindenmayer DB, Fischer J (2006) Habitat fragmentation and landscape change: an ecological and conservation synthesis. Island Press, Melbourne

    Google Scholar 

  • Lindenmayer DB, Luck G (2005) Synthesis: thresholds in conservation and management. Biol Conserv 124(3):351–354

    Article  Google Scholar 

  • Looney C, Caldwell TB, Eigenbrode DS (2009) When the prairie varies: the importance of site characteristics for strategising insect conservation. Insect Conserv Divers 2(4):243–250

    Article  Google Scholar 

  • Lunt ID, Spooner PG (2005) Using historical ecology to understand patterns of biodiversity in fragmented agricultural landscapes. J Biogeogr 32(11):1859–1873

    Article  Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405(6782):243–253

    Article  CAS  PubMed  Google Scholar 

  • Maron M, Bowen M, Fuller RA, Smith GC, Eyre TJ, Mathieson M, Watson JEM, McAlpine CA (2012) Spurious thresholds in the relationship between species richness and vegetation cover. Glob Ecol Biogeogr 21(6):682–692

    Article  Google Scholar 

  • McGarigal K, Cushman SA (2002) Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecol Appl 12(2):335–345

    Article  Google Scholar 

  • Morton JF (2007) The impact of climate change on smallholder and subsistence agriculture. Proc Natl Acad Sci USA 104(50):19680–19685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mucina L, Rutherford MC (eds) (2006) The vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute, Pretoria

    Google Scholar 

  • Nufio CR, McClenahan JL, Deane Bowers M (2011) Grasshopper response to reductions in habitat area as mediated by subfamily classification and life history traits. J Insect Conserv 15(3):409–419

    Article  Google Scholar 

  • Paget MJ, King EA (2008) MODIS land data sets for the Australian region. CSIRO Marine and Atmospheric Research internal report number 004

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Pinheiro J, Bates D, Debroy S, Sarkar D, The R Development Core Team (2013) nlme: linear and nonlinear mixed effects models. R package version 3.1-109

  • Polyakov M, Rowles AD, Radford JQ, Bennett AF, Park G, Roberts A, Pannell D (2013) Using habitat extent and composition to predict the occurrence of woodland birds in fragmented landscapes. Landscape Ecol 28(2):329–341

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Radford JQ, Bennett AF, Cheers GJ (2005) Landscape-level thresholds of habitat cover for woodland-dependent birds. Biol Conserv 124(3):317–337

    Article  Google Scholar 

  • Rhodes JR, McAlpine CA, Zuur AF, Smith GC, Ieno EN (2009) GLMM applied on the spatial distribution of koalas in a fragmented landscape. In: Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (eds) Mixed effects models and extensions in ecology with R. Springer, New York

    Google Scholar 

  • Rompré G, Robinson WD, Desrochers A, Angehr G (2009) Predicting declines in avian species richness under nonrandom patterns of habitat loss in a neotropical landscape. Ecol Appl 19(6):1614–1627

    Article  PubMed  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rouget M, Richardson DM, Cowling RM, Lloyd JW, Lombard AT (2003) Current patterns of habitat transformation and future threats to biodiversity in terrestrial ecosystems of the Cape Floristic Region, South Africa. Biol Conserv 112(1):63–85

    Article  Google Scholar 

  • Seabloom EW, Dobson AP, Stoms DM (2002) Extinction rates under nonrandom patterns of habitat loss. Proc Natl Acad Sci USA 99(17):11229–11234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • South African National Biodiversity Institute (2009) National land cover (NLC) 2009 [raster dataset]. South African National Biodiversity Institute, Pretoria. http://bgis.sanbi.org/landcover/project.asp. Accessed 03 April 2014

  • Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett 17(7):866–880

    Article  PubMed  Google Scholar 

  • Storch D, Evans KL, Gaston KJ (2005) The species-area-energy relationship. Ecol Lett 8(5):487–492

    Article  PubMed  Google Scholar 

  • Swift TL, Hannon SJ (2010) Critical thresholds associated with habitat loss: a review of the concepts, evidence, and applications. Biol Rev 85(1):35

    Article  PubMed  Google Scholar 

  • TERN/AusCover (2013) Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI)—MODIS, LPDAAC MOD13Q1 mosaic, Australia coverage. Made available by the AusCover facility (http://www.auscover.org.au) of the Terrestrial Ecosystem Research Network (TERN, http://www.tern.org.au). Accessed 17 March 2014

  • Turner WR, Tjørve E (2005) Scale-dependence in species-area relationships. Ecography 28(6):721–730

    Article  Google Scholar 

  • Warton DI, Hui FKC (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology 92(1):3–10

    Article  PubMed  Google Scholar 

  • Watson DM (2011) A productivity-based explanation for woodland bird declines: poorer soils yield less food. Emu 111(1):10–18

    Article  Google Scholar 

  • Watson JEM, Dudley N, Segan DB, Hockings M (2014) The performance and potential of protected areas. Nature 515(7525):67–73

    Article  CAS  PubMed  Google Scholar 

  • Whittaker RJ, Triantis KA (2012) The species–area relationship: an exploration of that ‘most general, yet protean pattern’. J Biogeogr 39(4):623–626

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1(1):3–14

    Article  Google Scholar 

Download references

Acknowledgements

We thank James Watson for comments on the manuscript, and Talitha Santini for advice on soil properties and relationships. JS was supported by funding from an Australian Government Australian Postgraduate Award scholarship and the Australian Government National Environmental Research Program. MM is supported by ARC Future Fellowship FT140100516.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy S. Simmonds.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simmonds, J.S., van Rensburg, B.J. & Maron, M. Non-random patterns of vegetation clearing and potential biases in studies of habitat area effects. Landscape Ecol 32, 729–743 (2017). https://doi.org/10.1007/s10980-016-0482-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0482-7

Keywords

Navigation