Skip to main content
Log in

Phosphoinositides in Ca2+ signaling and excitation–contraction coupling in skeletal muscle: an old player and newcomers

  • Review Article
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Since the postulate, 30 years ago, that phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P 2) as the precursor of inositol 1,4,5-trisphosphate (Ins(1,4,5)P 3) would be critical for skeletal muscle excitation–contraction (EC) coupling, the issue of whether phosphoinositides (PtdInsPs) may have something to do with Ca2+ signaling in muscle raised limited interest, if any. In recent years however, the PtdInsP world has expanded considerably with new functions for PtdIns(4,5)P 2 but also with functions for the other members of the PtdInsP family. In this context, the discovery that genetic deficiency in a PtdInsP phosphatase has dramatic consequences on Ca2+ homeostasis in skeletal muscle came unanticipated and opened up new perspectives in regards to how PtdInsPs modulate muscle Ca2+ signaling under normal and disease conditions. This review intends to make an update of the established, the questioned, and the unknown regarding the role of PtdInsPs in skeletal muscle Ca2+ homeostasis and EC coupling, with very specific emphasis given to Ca2+ signals in differentiated skeletal muscle fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allard B, Couchoux H, Pouvreau S, Jacquemond V (2006) Sarcoplasmic reticulum Ca2+ release and depletion fail to affect sarcolemmal ion channel activity in mouse skeletal muscle. J Physiol 575:69–81

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Al-Qusairi L, Weiss N, Toussaint A, Berbey C, Messaddeq N, Kretz C, Sanoudou D, Beggs AH, Allard B, Mandel JL, Laporte J, Jacquemond V, Buj-Bello A (2009) T-tubule disorganization and defective excitation-contraction coupling in muscle fibers lacking myotubularin lipid phosphatase. Proc Natl Acad Sci USA 106:18763–18768

    Article  PubMed Central  PubMed  Google Scholar 

  • Amoasii L, Hnia K, Chicanne G, Brech A, Cowling BS, Müller MM, Schwab Y, Koebel P, Ferry A, Payrastre B, Laporte J (2013) Myotubularin and PtdIns3P remodel the sarcoplasmic reticulum in muscle in vivo. J Cell Sci 126:1806–1819

    Article  PubMed  CAS  Google Scholar 

  • Araya R, Liberona JL, Cárdenas JC, Riveros N, Estrada M, Powell JA, Carrasco MA, Jaimovich E (2003) Dihydropyridine receptors as voltage sensors for a depolarization-evoked, IP3R-mediated, slow calcium signal in skeletal muscle cells. J Gen Physiol 121:3–16

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Balghi H, Sebille S, Constantin B, Patri S, Thoreau V, Mondin L, Mok E, Kitzis A, Raymond G, Cognard C (2006a) Mini-dystrophin expression down-regulates overactivation of G protein-mediated IP3 signaling pathway in dystrophin-deficient muscle cells. J Gen Physiol 127:171–182

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Balghi H, Sebille S, Mondin L, Cantereau A, Constantin B, Raymond G, Cognard C (2006b) Mini-dystrophin expression down-regulates IP3-mediated calcium release events in resting dystrophin-deficient muscle cells. J Gen Physiol 128:219–230

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93:1019–10137

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Barth PG, Van Wijngaarden GK, Bethlem J (1975) X-linked myotubular myopathy with fatal neonatal asphyxia. Neurology 25:531–536

    Article  PubMed  CAS  Google Scholar 

  • Berman DE, Dall’Armi C, Voronov SV, McIntire LB, Zhang H, Moore AZ, Staniszewski A, Arancio O, Kim TW, Di Paolo G (2008) Oligomeric amyloid-beta peptide disrupts phosphatidylinositol-4,5-bisphosphate metabolism. Nat Neurosci 11:547–554

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 1793:933–940

    Article  PubMed  CAS  Google Scholar 

  • Berthier C, Kutchukian C, Bouvard C, Okamura Y, Jacquemond V (2015) Depression of voltage-activated Ca2+ release in skeletal muscle by activation of a voltage-sensing phosphatase. J Gen Physiol 145:315–330

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Blaauw B, Del Piccolo P, Rodriguez L, Hernandez Gonzalez VH, Agatea L, Solagna F, Mammano F, Pozzan T, Schiaffino S (2012) No evidence for inositol 1,4,5-trisphosphate-dependent Ca2+ release in isolated fibers of adult mouse skeletal muscle. J Gen Physiol 140:235–241

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Blondeau F, Laporte J, Bodin S, Superti-Furga G, Payrastre B, Mandel JL (2000) Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway. Hum Mol Genet 9:2223–2229

    Article  PubMed  CAS  Google Scholar 

  • Buj-Bello A, Laugel V, Messaddeq N, Zahreddine H, Laporte J, Pellissier JF, Mandel JL (2002) The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc Natl Acad Sci USA 99:15060–15065

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Burgess GM, Godfrey PP, McKinney JS, Berridge MJ, Irvine RF, Putney JW Jr (1984) The second messenger linking receptor activation to internal Ca release in liver. Nature 309:63–66

    Article  PubMed  CAS  Google Scholar 

  • Carrasco MA, Sierralta J, Hidalgo C (1993) Phospholipase C activity in membranes and a soluble fraction isolated from frog skeletal muscle. Biochim Biophys Acta 1152:44–48

    Article  CAS  Google Scholar 

  • Carrasco MA, Riveros N, Ríos J, Müller M, Torres F, Pineda J, Lantadilla S, Jaimovich E (2003) Depolarization-induced slow calcium transients activate early genes in skeletal muscle cells. Am J Physiol 284:C1438–C1447

    Article  CAS  Google Scholar 

  • Casas M, Figueroa R, Jorquera G, Escobar M, Molgó J, Jaimovich E (2010) IP(3)-dependent, post-tetanic calcium transients induced by electrostimulation of adult skeletal muscle fibers. J Gen Physiol 136:455–467

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cheung KK, Ryten M, Burnstock G (2003) Abundant and dynamic expression of G protein-coupled P2Y receptors in mammalian development. Dev Dyn 228:254–266

    Article  PubMed  CAS  Google Scholar 

  • Chu A, Stefani E (1991) Phosphatidylinositol 4,5-bisphosphate-induced Ca2+ release from skeletal muscle sarcoplasmic reticulum terminal cisternal membranes. Ca2+ flux and single channel studies. J Biol Chem 266:7699–7705

    PubMed  CAS  Google Scholar 

  • Cowling BS, Chevremont T, Prokic I, Kretz C, Ferry A, Coirault C, Koutsopoulos O, Laugel V, Romero NB, Laporte J (2014) Reducing dynamin 2 expression rescues X-linked centronuclear myopathy. J Clin Invest 124:1350–1363

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cseri J, Szappanos H, Szigeti GP, Csernátony Z, Kovács L, Csernoch L (2002) A purinergic signal transduction pathway in mammalian skeletal muscle cells in culture. Pflugers Arch 443:731–738

    Article  PubMed  CAS  Google Scholar 

  • Csernoch L (2007) Sparks and embers of skeletal muscle: the exciting events of contractile activation. Pflugers Arch 454:869–878

    Article  PubMed  CAS  Google Scholar 

  • De Angelis MS, Palmucci L, Leone M, Doriguzzi C (1991) Centronuclear myopathy: clinical, morphological and genetic characters. A review of 288 cases. J Neurol Sci 103:2–9

    Article  PubMed  Google Scholar 

  • Deli T, Szappanos H, Szigeti GP, Cseri J, Kovács L, Csernoch L (2007) Contribution from P2X and P2Y purinoreceptors to ATP-evoked changes in intracellular calcium concentration on cultured myotubes. Pflugers Arch 453:519–529

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo Gl, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    Article  PubMed  CAS  Google Scholar 

  • Dirksen RT (2009) Checking your SOCCs and feet: the molecular mechanisms of Ca2+ entry in skeletal muscle. J Physiol 587:3139–3147

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Donaldson MR, Jensen JL, Tristani-Firouzi M, Tawil R, Bendahhou S, Suarez WA, Cobo AM, Poza JJ, Behr E, Wagstaff J, Szepetowski P, Pereira S, Mozaffar T, Escolar DM, Fu YH, Ptácek LJ (2003) PIP2 binding residues of Kir2.1 are common targets of mutations causing Andersen syndrome. Neurology 60:1811–1816

    Article  PubMed  CAS  Google Scholar 

  • Dowling JJ, Vreede AP, Low SE, Gibbs EM, Kuwada JY, Bonnemann CG, Feldman EL (2009) Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet 5:e1000372

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dowling JJ, Low SE, Busta AS, Feldman EL (2010) Zebrafish MTMR14 is required for excitation-contraction coupling, developmental motor function and the regulation of autophagy. Hum Mol Genet 19:2668–2681

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eltit JM, Hidalgo J, Liberona JL, Jaimovich E (2004) Slow calcium signals after tetanic electrical stimulation in skeletal myotubes. Biophys J 86:3042–3051

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eltit JM, García AA, Hidalgo J, Liberona JL, Chiong M, Lavandero S, Maldonado E, Jaimovich E (2006) Membrane electrical activity elicits inositol 1,4,5-trisphosphate-dependent slow Ca2+ signals through a Gbetagamma/phosphatidylinositol 3-kinase gamma pathway in skeletal myotubes. J Biol Chem 281:12143–12154

    Article  PubMed  CAS  Google Scholar 

  • Estrada M, Cárdenas C, Liberona JL, Carrasco MA, Mignery GA, Allen PD, Jaimovich E (2001) Calcium transients in 1B5 myotubes lacking ryanodine receptors are related to inositol trisphosphate receptors. J Biol Chem 276:22868–22874

    Article  PubMed  CAS  Google Scholar 

  • Estrada M, Espinosa A, Müller M, Jaimovich E (2003) Testosterone stimulates intracellular calcium release and mitogen-activated protein kinases via a G protein-coupled receptor in skeletal muscle cells. Endocrinology 144:3586–3597

    Article  PubMed  CAS  Google Scholar 

  • Falcone S, Roman W, Hnia K, Gache V, Didier N, Lainé J, Auradé F, Marty I, Nishino I, Charlet-Berguerand N, Romero NB, Marazzi G, Sassoon D, Laporte J, Gomes ER (2014) N-WASP is required for Amphiphysin-2/BIN1-dependent nuclear positioning and triad organization in skeletal muscle and is involved in the pathophysiology of centronuclear myopathy. EMBO Mol Med 6:1455–1475

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Flucher BE (2015) How is SR calcium release in muscle modulated by PIP(4,5)2? J Gen Physiol 145:361–364

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fugier C, Klein AF, Hammer C, Vassilopoulos S, Ivarsson Y, Toussaint A, Tosch V, Vignaud A, Ferry A, Messaddeq N, Kokunai Y, Tsuburaya R, de la Grange P, Dembele D, Francois V, Precigout G, Boulade-Ladame C, Hummel MC, Lopez de Munain A, Sergeant N, Laquerrière A, Thibault C, Deryckere F, Auboeuf D, Garcia L, Zimmermann P, Udd B, Schoser B, Takahashi MP, Nishino I, Bassez G, Laporte J, Furling D, Charlet-Berguerand N (2011) Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat Med 17:720–725

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo C, Carrasco MA, Magendzo K, Jaimovich E (1986) Phosphorylation of phosphatidylinositol by transverse tubule vesicles and its possible role in excitation-contraction coupling. FEBS Lett 202:69–73

    Article  PubMed  CAS  Google Scholar 

  • Hille B, Dickson EJ, Kruse M, Vivas O, Suh BC (2015) Phosphoinositides regulate ion channels. Biochim Biophys Acta 1851:844–856

    Article  PubMed  CAS  Google Scholar 

  • Hnia K, Kretz C, Amoasii L, Böhm J, Liu X, Messaddeq N, Qu CK, Laporte J (2012) Primary T-tubule and autophagy defects in the phosphoinositide phosphatase Jumpy/MTMR14 knockout mice muscle. Adv Biol Regul 52:98–107

    Article  PubMed  CAS  Google Scholar 

  • Inui M, Saito A, Fleischer S (1987) Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J Biol Chem 262:1740–1747

    PubMed  CAS  Google Scholar 

  • Jaimovich E, Reyes R, Liberona JL, Powell JA (2000) IP(3) receptors, IP(3) transients, and nucleus-associated Ca2+ signals in cultured skeletal muscle. Am J Physiol 278:C998–C1010

    CAS  Google Scholar 

  • Jean S, Kiger AA (2014) Classes of phosphoinositide 3-kinases at a glance. J Cell Sci 127:923–928

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jorquera G, Altamirano F, Contreras-Ferrat A, Almarza G, Buvinic S, Jacquemond V, Jaimovich E, Casas M (2013) Cav1.1 controls frequency-dependent events regulating adult skeletal muscle plasticity. J Cell Sci 126:1189–1198

    Article  PubMed  CAS  Google Scholar 

  • Juretić N, García-Huidobro P, Iturrieta JA, Jaimovich E, Riveros N (2006) Depolarization-induced slow Ca2+ transients stimulate transcription of IL-6 gene in skeletal muscle cells. Am J Physiol 290:C1428–C1436

    Article  CAS  Google Scholar 

  • Kaur G, Pinggera A, Ortner NJ, Lieb A, Sinnegger-Brauns MJ, Yarov-Yarovoy V, Obermair GJ, Flucher BE, Striessnig J (2015) A polybasic plasma membrane binding motif in the I-II linker stabilizes voltage-gated cav1.2 calcium channel function. J Biol Chem 290:21086–21100

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim YJ, Hernandez ML, Balla T (2013) Inositol lipid regulation of lipid transfer in specialized membrane domains. Trends Cell Biol 23:270–278

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kobayashi M, Muroyama A, Ohizumi Y (1989) Phosphatidylinositol 4,5-bisphosphate enhances calcium release from sarcoplasmic reticulum of skeletal muscle. Biochem Biophys Res Commun 163:1487–1491

    Article  PubMed  CAS  Google Scholar 

  • Launikonis BS, Barnes M, Stephenson DG (2003) Identification of the coupling between skeletal muscle store-operated Ca2+ entry and the inositol trisphosphate receptor. Proc Natl Acad Sci USA 100:2941–2944

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee E, Marcucci M, Daniell L, Pypaert M, Weisz OA, Ochoa GC, Farsad K, Wenk MR, De Camilli P (2002) Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 297:1193–1196

    Article  PubMed  CAS  Google Scholar 

  • Liberona JL, Cárdenas JC, Reyes R, Hidalgo J, Molgó J, Jaimovich E (2008) Sodium-dependent action potentials induced by brevetoxin-3 trigger both IP3 increase and intracellular Ca2+ release in rat skeletal myotubes. Cell Calcium 44:289–297

    Article  PubMed  CAS  Google Scholar 

  • Lopez JR, Shtifman A (2010) Intracellular β-amyloid accumulation leads to age-dependent progression of Ca2+ dysregulation in skeletal muscle. Muscle Nerve 42:731–738

    Article  PubMed  CAS  Google Scholar 

  • Marone R, Cmiljanovic V, Giese B, Wymann MP (2008) Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta 1784:159–185

    Article  PubMed  CAS  Google Scholar 

  • May C, Weigl L, Karel A, Hohenegger M (2006) Extracellular ATP activates ERK1/ERK2 via a metabotropic P2Y1 receptor in a Ca2+ independent manner in differentiated human skeletal muscle cells. Biochem Pharmacol 71:1497–1509

    Article  PubMed  CAS  Google Scholar 

  • Meissner G (1986) Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J Biol Chem 261:6300–6306

    PubMed  CAS  Google Scholar 

  • Milting H, Heilmeyer LM Jr, Thieleczek R (1996) Cloning of a phospholipase C-delta 1 of rabbit skeletal muscle. J Muscle Res Cell Motil 17:79–84

    Article  PubMed  CAS  Google Scholar 

  • Monnier N, Ferreiro A, Marty I, Labarre-Vila A, Mezin P, Lunardi J (2003) A homozygous splicing mutation causing a depletion of skeletal muscle RYR1 is associated with multi-minicore disease congenital myopathy with ophthalmoplegia. Hum Mol Genet 12:1171–1178

    Article  PubMed  CAS  Google Scholar 

  • Nishi M, Komazaki S, Kurebayashi N, Ogawa Y, Noda T, Iino M, Takeshima H (1999) Abnormal features in skeletal muscle from mice lacking mitsugumin29. J Cell Biol 147:1473–1480

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ogawa Y, Harafuji H (1989) Ca-release by phosphoinositides from sarcoplasmic reticulum of frog skeletal muscle. J Biochem 106:864–867

    PubMed  CAS  Google Scholar 

  • Ohizumi Y, Hirata Y, Suzuki A, Kobayashi M (1999) Two novel types of calcium release from skeletal sarcoplasmic reticulum by phosphatidylinositol 4,5-biphosphate. Can J Physiol Pharmacol 77:276–285

    Article  PubMed  CAS  Google Scholar 

  • Papayannopoulos V, Co C, Prehoda KE, Snapper S, Taunton J, Lim WA (2005) A polybasic motif allows N-WASP to act as a sensor of PIP2 density. Mol Cell 17:181–191

    Article  PubMed  CAS  Google Scholar 

  • Picas L, Viaud J, Schauer K, Vanni S, Hnia K, Fraisier V, Roux A, Bassereau P, Gaits-Iacovoni F, Payrastre B, Laporte J, Manneville JB, Goud B (2014) BIN1/M-Amphiphysin2 induces clustering of phosphoinositides to recruit its downstream partner dynamin. Nat Commun 5:5647

    Article  PubMed  CAS  Google Scholar 

  • Powell JA, Carrasco MA, Adams DS, Drouet B, Rios J, Müller M, Estrada M, Jaimovich E (2001) IP(3) receptor function and localization in myotubes: an unexplored Ca2+ signaling pathway in skeletal muscle. J Cell Sci 114:3673–3683

    PubMed  CAS  Google Scholar 

  • Ríos E, Pizarro G, Stefani E (1992) Charge movement and the nature of signal transduction in skeletal muscle excitation-contraction coupling. Annu Rev Physiol 54:109–133

    Article  PubMed  Google Scholar 

  • Rodríguez EG, Lefebvre R, Bodnár D, Legrand C, Szentesi P, Vincze J, Poulard K, Bertrand-Michel J, Csernoch L, Buj-Bello A, Jacquemond V (2014) Phosphoinositide substrates of myotubularin affect voltage-activated Ca2+ release in skeletal muscle. Pflugers Arch 466:973–985

    Article  PubMed  CAS  Google Scholar 

  • Royer B, Hnia K, Gavriilidis C, Tronchère H, Tosch V, Laporte J (2013) The myotubularin-amphiphysin 2 complex in membrane tubulation and centronuclear myopathies. EMBO Rep 14:907–915

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ryten M, Yang SY, Dunn PM, Goldspink G, Burnstock G (2004) Purinoceptor expression in regenerating skeletal muscle in the mdx mouse model of muscular dystrophy and in satellite cell cultures. FASEB J 18:1404–1416

    PubMed  CAS  Google Scholar 

  • Schneider MF (1994) Control of calcium release in functioning skeletal muscle fibers. Annu Rev Physiol 56:463–484

    Article  PubMed  CAS  Google Scholar 

  • Shen J, Yu WM, Brotto M, Scherman JA, Guo C, Stoddard C, Nosek TM, Valdivia HH, Qu CK (2009) Deficiency of MIP/MTMR14 phosphatase induces a muscle disorder by disrupting Ca2+ homeostasis. Nat Cell Biol 11:769–776

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shtifman A, Ward CW, Laver DR, Bannister ML, Lopez JR, Kitazawa M, LaFerla FM, Ikemoto N, Querfurth HW (2010) Amyloid-β protein impairs Ca2+ release and contractility in skeletal muscle. Neurobiol Aging 31:2080–2090

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Smith LL, Gupta VA, Beggs AH (2014) Bridging integrator 1 (Bin1) deficiency in zebrafish results in centronuclear myopathy. Hum Mol Genet 23:3566–3578

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sun Y, Thapa N, Hedman AC, Anderson RA (2013) Phosphatidylinositol 4,5-bisphosphate: targeted production and signaling. BioEssays 35:513–522

    Article  PubMed  CAS  Google Scholar 

  • Szigeti GP, Szappanos H, Deli T, Cseri J, Kovács L, Csernoch L (2007) Differentiation-dependent alterations in the extracellular ATP-evoked calcium fluxes of cultured skeletal muscle cells from mice. Pflugers Arch 453:509–518

    Article  PubMed  CAS  Google Scholar 

  • Tjondrokoesoemo A, Park KH, Ferrante C, Komazaki S, Lesniak S, Brotto M, Ko JK, Zhou J, Weisleder N, Ma J (2011) Disrupted membrane structure and intracellular Ca2+ signaling in adult skeletal muscle with acute knockdown of Bin1. PLoS One 6:e25740

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tjondrokoesoemo A, Li N, Lin PH, Pan Z, Ferrante CJ, Shirokova N, Brotto M, Weisleder N, Ma J (2013) Type 1 inositol (1,4,5)-trisphosphate receptor activates ryanodine receptor 1 to mediate calcium spark signaling in adult mammalian skeletal muscle. J Biol Chem 288:2103–2109

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tosch V, Rohde HM, Tronchère H, Zanoteli E, Monroy N, Kretz C, Dondaine N, Payrastre B, Mandel JL, Laporte J (2006) A novel PtdIns3P and PtdIns(3,5)P2 phosphatase with an inactivating variant in centronuclear myopathy. Hum Mol Genet 15:3098–3106

    Article  PubMed  CAS  Google Scholar 

  • Toussaint A, Cowling BS, Hnia K, Mohr M, Oldfors A, Schwab Y, Yis U, Maisonobe T, Stojkovic T, Wallgren-Pettersson C, Laugel V, Echaniz-Laguna A, Mandel JL, Nishino I, Laporte J (2011) Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathol 121:253–266

    Article  PubMed  Google Scholar 

  • Tronchère H, Laporte J, Pendaries C, Chaussade C, Liaubet L, Pirola L, Mandel JL, Payrastre B (2004) Production of phosphatidylinositol 5-phosphate by the phosphoinositide 3-phosphatase myotubularin in mammalian cells. J Biol Chem 279:7304–7312

    Article  PubMed  CAS  Google Scholar 

  • Valdés JA, Hidalgo J, Galaz JL, Puentes N, Silva M, Jaimovich E, Carrasco MA (2007) NF-kappaB activation by depolarization of skeletal muscle cells depends on ryanodine and IP3 receptor-mediated calcium signals. Am J Physiol 292:C1960–C1970

    Article  CAS  Google Scholar 

  • Várnai P, Balla T (1998) Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Cell Biol 143:501–510

    Article  PubMed Central  PubMed  Google Scholar 

  • Vergara J, Tsien RY, Delay M (1985) Inositol 1,4,5-trisphosphate: a possible chemical link in excitation-contraction coupling in muscle. Proc Natl Acad Sci USA 82:6352–6356

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Walker JW, Somlyo AV, Goldman YE, Somlyo AP, Trentham DR (1987) Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of caged inositol 1,4,5-trisphosphate. Nature 327:249–252

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Weisleder N, Collet C, Zhou J, Chu Y, Hirata Y, Zhao X, Pan Z, Brotto M, Cheng H, Ma J (2005) Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle. Nat Cell Biol 7:525–530

    Article  PubMed  CAS  Google Scholar 

  • Wu F, Mi W, Hernández-Ochoa EO, Burns DK, Fu Y, Gray HF, Struyk AF, Schneider MF, Cannon SC (2012) A calcium channel mutant mouse model of hypokalemic periodic paralysis. J Clin Invest 122:4580–4591

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yamamoto M, Chen MZ, Wang YJ, Sun HQ, Wei Y, Martinez M, Yin HL (2006) Hypertonic stress increases phosphatidylinositol 4,5-bisphosphate levels by activating PIP5KIbeta. J Biol Chem 281:32630–32638

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Yamaguchi N, Xu L, Wang Y, Sewry C, Jungbluth H, Zorzato F, Bertini E, Muntoni F, Meissner G, Treves S (2006) Characterization of recessive RYR1 mutations in core myopathies. Hum Mol Genet 15:2791–2803

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Jungbluth H, Sewry CA, Feng L, Bertini E, Bushby K, Straub V, Roper H, Rose MR, Brockington M, Kinali M, Manzur A, Robb S, Appleton R, Messina S, D’Amico A, Quinlivan R, Swash M, Müller CR, Brown S, Treves S, Muntoni F (2007) Molecular mechanisms and phenotypic variation in RYR1-related congenital myopathies. Brain 130:2024–2036

    Article  PubMed  Google Scholar 

  • Zhou H, Lillis S, Loy RE, Ghassemi F, Rose MR, Norwood F, Mills K, Al-Sarraj S, Lane RJ, Feng L, Matthews E, Sewry CA, Abbs S, Buk S, Hanna M, Treves S, Dirksen RT, Meissner G, Muntoni F, Jungbluth H (2010) Multi-minicore disease and atypical periodic paralysis associated with novel mutations in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord 20:166–173

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Centre National de la Recherche Scientifique (CNRS) and Université Lyon 1 to Centre de Génétique et de Physiologie Moléculaire et Cellulaire, by a grant from Association Française contre les Myopathies to V.J. (AFM # 18648), by the Hungarian National Science Fund (NN-107765) to L.C. and by the European Union, co-financed by the European Social Fund (TÁMOP-4.1.2.E-13/1/KONV-2013-0010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Jacquemond.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Csernoch, L., Jacquemond, V. Phosphoinositides in Ca2+ signaling and excitation–contraction coupling in skeletal muscle: an old player and newcomers. J Muscle Res Cell Motil 36, 491–499 (2015). https://doi.org/10.1007/s10974-015-9422-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-015-9422-4

Keywords

Navigation