Skip to main content
Log in

Thermo-mechanical properties and electrical mapping of nanoscale domains of carbon-based structural resins

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Carbon nanostructured forms, such as one-dimensional (1D) carbon nanofibers (CNFs) and two-dimensional (2D) graphene nanoplatelets (GNPs), are increasingly attracting the attention of scientists whose studies are aimed at obtaining superior nanocomposites with unrivaled performance and/or unprecedented properties. In this work, nanocomposites loaded with different mass percentages of carbonaceous nanoparticles (CNFs, GNPs) capable to exhibit discrete electrical conductivity have been investigated using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and tunneling atomic force microscopy (TUNA). DSC and DMA investigations highlighted that an appropriate chemical composition of the hosting matrix, together with a suitable two-stage curing cycle allows formulating structural resins characterized by high values of the curing degree (higher than 97%), glass transition temperature (also higher than 250 °C), and storage modulus (higher than 3000 MPa at room temperature). TUNA analysis evidences a satisfactory distribution of the conductive nanofiller on nanometric domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Benega MAG, Silva WM, Schnitzler MC, Andrade RJE, Ribeiro H. Improvements in thermal and mechanical properties of composites based on epoxy-carbon nanomaterials: a brief landscape. Polym Testing. 2021;98: 107180. https://doi.org/10.1016/j.polymertesting.2021.107180.

    Article  CAS  Google Scholar 

  2. Raimondo M, Guadagno L, Speranza V, Bonnaud L, Dubois P, Lafdi K. Multifunctional graphene/POSS epoxy resin tailored for aircraft lightning strike protection. Compos Part B Eng. 2018;140:44–56. https://doi.org/10.1016/j.compositesb.2017.12.015.

    Article  CAS  Google Scholar 

  3. Verma D, Gope PC, Shandilya A, Gupta A. Mechanical-thermal-electrical and morphological properties of graphene reinforced polymer composites: a review. Trans Indian Inst Met. 2014;67:803–16. https://doi.org/10.1007/s12666-014-0408-5.

    Article  CAS  Google Scholar 

  4. Nobile MR, Raimondo M, Naddeo C, Guadagno L. Rheological and morphological properties of non-covalently functionalized graphene-based structural epoxy resins with intrinsic electrical conductivity and thermal stability. Nanomaterials. 2020;10(7):1310. https://doi.org/10.3390/nano10071310.

    Article  CAS  PubMed Central  Google Scholar 

  5. Raimondo M, Guadagno L, Vertuccio L, Naddeo C, Barra G, Spinelli G, Lamberti P, Tucci V, Lafdi K. Electrical conductivity of carbon nanofiber reinforced resins: potentiality of tunneling atomic force microscopy (TUNA) technique. Compos Part B Eng. 2018;143:148–60. https://doi.org/10.1016/j.compositesb.2018.02.005.

    Article  CAS  Google Scholar 

  6. Raimondo M, Naddeo C, Vertuccio L, Lafdi K, Sorrentino A, Guadagno L. Carbon-based aeronautical epoxy nanocomposites: effectiveness of atomic force microscopy (AFM) in investigating the dispersion of different carbonaceous nanoparticles. Polymers. 2019;11(5):832. https://doi.org/10.3390/polym11050832.

    Article  CAS  PubMed Central  Google Scholar 

  7. Naddeo C, Guadagno L, De Luca S, Vittoria V, Camino G. Mechanical and transport properties of irradiated linear low density polyethylene (LLDPE). Polym Degrad Stab. 2001;72(2):239–47. https://doi.org/10.1016/S0141-3910(01)00025-8.

    Article  CAS  Google Scholar 

  8. Naddeo C, Guadagno L, Vittoria V. Photooxidation of spherilene linear low-density polyethylene films subjected to environmental weathering 1 Changes in mechanical properties. Polym Degrad Stab. 2004;85(3):1009–13. https://doi.org/10.1016/j.polymdegradstab.2003.04.005.

    Article  CAS  Google Scholar 

  9. Guadagno L, Naddeo C, Raimondo M, Gorrasi G, Vittoria V. Effect of carbon nanotubes on the photo-oxidative durability of syndiotactic polypropylene. Polym Degrad Stab. 2010;95(9):1614–26. https://doi.org/10.1016/j.polymdegradstab.2010.05.030.

    Article  CAS  Google Scholar 

  10. Guadagno L, Naddeo C, Raimondo M, Speranza V, Pantani R, Acquesta A, Carangelo A, Monetta T. UV irradiated graphene-based nanocomposites: change in the mechanical properties by local harmoniX atomic force microscopy detection. Materials. 2019;12(6):962. https://doi.org/10.3390/ma12060962.

    Article  CAS  PubMed Central  Google Scholar 

  11. Idumah CI, Hassan A. Emerging trends in graphene carbon based polymer. Rev Chem Eng. 2016;32(2):223–64. https://doi.org/10.1515/revce-2015-0038.

    Article  CAS  Google Scholar 

  12. Araby S, Philips B, Meng Q, Ma J, Laoui T, Wang CH. Recent advances in carbon-based nanomaterials for flame retardant polymers and composites. Compos Part B Eng. 2021;212: 108675. https://doi.org/10.1016/j.compositesb.2021.108675.

    Article  CAS  Google Scholar 

  13. Al Sheheri SZ, Al-Amshany ZM, Al Sulami QA, Tashkandi NY, Hussein MA, El-Shishtawy RM. The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites. Des Monomers Polym. 2019;22(1):8–53. https://doi.org/10.1080/15685551.2019.1565664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Loos MR, Ferreira Coelho LA, Pezzin SH, Amico SC. Effect of carbon nanotubes addition on the mechanical and thermal properties of epoxy matrices. Mater Res. 2008;11(3):347–52. https://doi.org/10.1590/S1516-14392008000300019.

    Article  CAS  Google Scholar 

  15. Blanco I, Cicala G, Faro CL, Recca A. Development of a toughened DGEBS/DDS system toward improved thermal and mechanical properties by the addition of a tetrafunctional epoxy resin and a novel thermoplastic. J Appl Polym Sci. 2003;89(1):268–73. https://doi.org/10.1002/app.12179.

    Article  CAS  Google Scholar 

  16. Blanco I, Cicala G, Faro CL, Motta O, Recca G. Thermomechanical and morphological properties of epoxy resins modified with functionalized hyperbranched polyester. Polym Eng Sci. 2006;46(11):1502–11. https://doi.org/10.1002/pen.20604.

    Article  CAS  Google Scholar 

  17. Blanco I, Cicala G, Motta O, Recca A. Influence of a selected hardener on the phase separation in epoxy/thermoplastic polymer blends. J Appl Polym Sci. 2004;94(1):361–71. https://doi.org/10.1002/app.20927.

    Article  CAS  Google Scholar 

  18. Zhou YX, Pervin F, Lewis L, Jeelani S. Experimental study on the thermal properties of multi-walled carbon nanotube reinforced epoxy. Mater Sci Eng A. 2007;452:657–64. https://doi.org/10.1016/j.msea.2006.11.066.

    Article  CAS  Google Scholar 

  19. Guadagno L, Raimondo M, Vittoria V, Vertuccio L, Naddeo C, Russo S, De Vivo B, Lamberti P, Spinelli G, Tucci V. Development of epoxy mixtures for application in aeronautics and aerospace. RSC Adv. 2014;4:15474–88. https://doi.org/10.1039/C3RA48031C.

    Article  CAS  Google Scholar 

  20. Binder K, Gennes PG, Giannelis EP, Grest GS, Hervet H, Krishnamoorti R, Léger L, Manias E, Raphaël E, Wang SQ. Polymers in confined environments. 1st ed. Berlin: Springer; 1999.

    Google Scholar 

  21. Bhat A, Budholiya S, Raj SA, Sultan MTH, Hui D, Md Shah AU, Safri SNA. Review on nanocomposites based on aerospace applications. Nanotechnol Rev. 2021;10:237–53. https://doi.org/10.1515/ntrev-2021-0018.

    Article  CAS  Google Scholar 

  22. Kleiman JI, Tagawa M, Kimoto Y, editors. Protection of materials and structures from the space environment. Berlin: Springer; 2006.

    Google Scholar 

  23. Bannov AG, Popov MV, Kurmashov PB. Thermal analysis of carbon nanomaterials: advantages and problems of interpretation. J Therm Anal Calorim. 2020;142:349–70. https://doi.org/10.1007/s10973-020-09647-2.

    Article  CAS  Google Scholar 

  24. Guadagno L, Raimondo M, Vertuccio L, Mauro M, Guerra G, Lafdi L, De Vivo B, Lamberti P, Spinelli G, Tucci V. Optimization of graphene-based materials outperforming host epoxy matrices. RSC Adv. 2015;5:36969–78. https://doi.org/10.1039/c5ra04558d.

    Article  CAS  Google Scholar 

  25. Chung DDL. A review of exfoliated graphite. J Mater Sci. 2016;51(1):554–68. https://doi.org/10.1007/s10853-015-9284-6.

    Article  CAS  Google Scholar 

  26. Nobile MR, Raimondo M, Lafdi K, Fierro A, Rosolia S, Guadagno L. Relationships between nanofiller morphology and viscoelastic properties in CNF/epoxy resins. Polym Compos. 2015;36(6):1152–60. https://doi.org/10.1002/pc.23362.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Corresponding author

Correspondence to Marialuigia Raimondo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raimondo, M., Naddeo, C., Catauro, M. et al. Thermo-mechanical properties and electrical mapping of nanoscale domains of carbon-based structural resins. J Therm Anal Calorim 147, 5473–5481 (2022). https://doi.org/10.1007/s10973-021-11176-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11176-5

Keywords

Navigation