Skip to main content
Log in

New complexes of heavy lanthanides with 4,4′-bipyridine and trichloroacetates

Synthesis, thermal and other properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Novel mixed-ligand complexes with empirical formula Ln(4-bpy)2(CCl3COO)3·nH2O [where Ln(III) = Dy, Ho, Er, Tm, Yb, Lu; 4-bpy = 4,4′-bipyridine] were prepared and characterized by chemical and elemental analysis, infrared spectroscopy, and conductivity measurements (in methanol, dimethylformamide, and dimethyl sulfoxide). X-ray powder diffraction patterns indicate that the complexes are small crystalline compounds. IR spectra of complexes show that all carboxylate groups and 4-bpy are engaged in coordination of lanthanide ions. The thermal behavior of complexes was studied by means of TG, DTG, DTA techniques in the solid state under nonisothermal conditions in air atmosphere. During heating, the complexes decompose via intermediate products to the oxide Ln2O3. The combined TG–FTIR technique was employed to study the decomposition pathway of the Ho(III) and Tm(III) complexes in flowing argon atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blower PJ. Inorganic pharmaceuticals. Annu Rep Prog Chem A. 2000;96:645–62. doi:10.1039/B003162N.

    Article  CAS  Google Scholar 

  2. Łyszczek R. Synthesis, structure, thermal and luminescent behavior of lanthanide-pyridine_3, 5-dicarboxylate frameworks series. Thermochim Acta. 2010;509:120–7. doi:10.1016/j.tca.2010.06.010.

    Article  Google Scholar 

  3. Woods M, Kavacs Z, Sherry AD. Targeted complexes of lanthanide(III) ions as therapeutic and diagnostic pharmaceuticals. J. Supramol. Chem. 2002;2:1–15. doi:10.1016/S1472-7862(02)00072-2.

    Article  CAS  Google Scholar 

  4. Chang WB, Zhang BL, Li LZ, Ci YX. Double-label simultaneous time-resolved fluoroimmunoassay of phenytoin and phenobarbital. Microchem J. 1997;55:287–95. doi:10.1006/mchj.1996.1305.

    Article  CAS  Google Scholar 

  5. Ferri D, Forni L. Methane combustion on some perovskite-like mixed oxides. Appl Catal B Environ. 1998;16:119–26. doi:10.1016/S0926-3373(97)00065-9.

    Article  CAS  Google Scholar 

  6. Parac-Vogt TN, Binnemans K. Lanthanide(III) nosylates as new nitration catalysts. Tetrahedron Lett. 2004;45:3137–9. doi:10.1016/j.tetlet.2004.02.084.

    Article  CAS  Google Scholar 

  7. Batten A, Robson R. Interpenetrating nets: ordered, periodic entanglement. Angew Chem Int Ed. 1998;37:1461–94. doi:10.1002/(SICI)1521-3773(19980619).

    Article  CAS  Google Scholar 

  8. Janiak C. Functional organic analogues of zeolites based on metal–organic coordination frameworks. Angew Chem Int Ed Engl. 1997;36:1431–4. doi:10.1002/anie.199714311.

    Article  CAS  Google Scholar 

  9. Tao J, Tong ML, Chen XM (2000) Hydrothermal synthesis and crystal structures of three-dimensional co-ordination frameworks constructed with mixed terephthalate (tp) and 4,4′-bipyridine (4,4′-bipy) ligands: [M(tp)(4,4′-bipy)] (M = CoII, CdII or ZnII). J Chem Soc Dalton Trans. 3669–74.

  10. Zaworotko MJ. Superstructural diversity in two dimensions: crystal engineering of laminated solids. Chem Commun. 2001;1:1–9.

    Article  Google Scholar 

  11. Czylkowska A, Kruszyński R, Czakis-Sulikowska D, Markiewicz M. Coordination polymer of lanthanum: synthesis, properties and crystal structure of [La(4,4′-bipyridine)(CCl2HCOO)3(H2O)]n. J Coord Chem. 2007;60:2659–69. doi:10.1080/00958970701299550.

    Article  CAS  Google Scholar 

  12. Sain S, Maji TK, Mostafa G, Lu TH, Chudhuri VR. Two new supramolecular malonato complexes of manganese(II): synthesis, crystal structure and magnetic property. Inorg Chim Acta. 2003;351:12–20.

    Article  CAS  Google Scholar 

  13. Li JM, Zhang YG, Chen JH, Wang QM, Wu XT. Microporous networks co-assembled by both rigid and flexible building blocks. Polyhedron. 2000;19:1117–21. doi:10.1016/S0277-5387(00)00361-2.

    Article  CAS  Google Scholar 

  14. Tao I, Yin X, Huang R, Zhang L. Hydrothermal synthesis of a novel microporous framework sustained by polycatenated [CuI2(ip)(4,4′-bipyridine)]n (ip = isophthalate) ladders. Inorg Chem Commun. 2001;5:1000–2. doi:10.1016/S1387-7003(02)00624-X.

    Article  Google Scholar 

  15. Carballo R, Castiňeiras A, Covelo B, Váquez-Lopez EM. Coordination polymers of copper(II) based on mixed N- and O-donor ligands: the crystal structures of [CuL2(4,4′-bipy)]n (L = lactate or 2-methyllactate). Polyhedron. 2001;20:899–904. doi:10.1016/S0277-5387(01)00749-5.

    Article  CAS  Google Scholar 

  16. Oczko G, Starynowicz P. Comparison of optical properties and crystal structures of the praseodymium and europium chloroderivatives of acetates. J Mol Struct. 2005;740:237–48. doi:10.1016/j.molstruc.2004.12.018.

    Article  CAS  Google Scholar 

  17. Oczko G, Legendziewicz J, Mroziński J, Meyer G. Comparative spectroscopic and magnetic studies of two types of Ln and Ln:Cu trichloroacetates. J Alloys Compd. 1998;219:275–7.

    Google Scholar 

  18. Legendziewicz J, Borzechowska M, Oczko G, Mroziński J. Polymeric polynuclear systems of Pr, Yb and Pr:Cu trichloroacetates; their spectroscopy and magnetism. Spectrochim Acta A. 1998;54:2197–205. doi:10.1016/S1386-1425(98)00138-3.

    Article  Google Scholar 

  19. Voronkova VK, Galeev RT, Legendziewicz J, Oczko G (2000) EPR spectra of alternating chains in (Nd2(CCl3COO)6(H2O)3]n·nH2O. XIIth Winter School on Coordination Chemistry, Karpacz, 4–8 Dec, p. 89.

  20. Voronkova VK, Yablokov V, Oczko G Polynuclear complexes of lanthanides with trichloroacetate ligands: syntheses, structures and EPR studies of Nd(CCl3COO)3·2H2O (Nd, Cu)(CCl3COO)8·6H2O and (Nd, La)(CCl3COO)3·2H2O. XIIIth Summer School on Coordination Chemistry, Polanica Zdrój, 2–8 June 1996, p. 177.

  21. Barja B, Baggio R, Garland MT, Aramendio PF, Pena O, Perec M. Crystal structures and luminescent properties of terbium(III) carboxylates. Inorg Chim Acta. 2003;346:187–96. doi:10.1016/S0020-1693(02)01429-9.

    Article  CAS  Google Scholar 

  22. Łyszczek R. Thermal and spectroscopic investigations of new lanthanide complexes with 1,2,4-benzenetricarboxylic acid. J Therm Anal Calorim. 2007;90:533–9.

    Article  Google Scholar 

  23. Łyszczek R. Comparison of thermal properties of lanthanide trimellitates prepared by different methods. J Therm Anal Calorim. 2008;93:833–8.

    Article  Google Scholar 

  24. Imai T, Shimoi M, Ouchi Z. The crystal and molecular structure of the hydrated light lanthanoid(III) chloroacetates, [{M(ClCH2CO2)3}3(H2O)5]n (M = La, Pr, Nd and Eu). Bull Chem Soc Jpn. 1987;60:159–69. doi:10.1246/bcsj.60.159.

    Article  CAS  Google Scholar 

  25. Rohde A, Urland W (2006) Catena-poly[[(2,2′-bipyridine-j2 N,N′)-neodymium(III)]-l-dichloroacetato-1j2O:O′:2jOdi-l-dichloroacetato-j4O:O″]. Acta Crystallogr Sec E. 2006;62(7):m1618–m1619. doi:10.1107/S1600536806022872

    Google Scholar 

  26. Rohde A, Urland W (2006) Catena-poly[[(2,2″-bipyridine-j2 N,N″)-praseodymium(III)]-l-dichloroacetate-1j2O:O″:2jO-di-l-dichloroacetato-j4O:O″]. Acta Crystallogr E. 2006;62(11):m2843–m2845. doi: 10.1107/S160053680603995X.

    Google Scholar 

  27. John D, Urland W. Synthesis, crystal structure, and magnetic behaviour of [Gd2(ClF2CCOO)6(H2O)2(bipy)2]2·C2H5OH. Z Anorg Allg Chem. 2006;632(10):1768–70. doi:10.1002/zaac.200500400.

    Article  Google Scholar 

  28. John D, Urland W. Crystal structure and magnetic behaviour of the new gadolinium complex compound Gd2(ClH2CCOO)6(bipy)2. Eur J Inorg Chem. 2005;22:4486–9. doi:10.1002/ejic.200500734.

    Article  Google Scholar 

  29. Rohde A, John D, Urland W. Crystal structures of Gd2(Cl3CCOO)6(bipy)2(H2O)2·4-bipy, Pr(Cl3CCOO)3(bipy)2, Nd(Cl3CCOO)3(bipy)2 and Er(Cl3CCOO)3(bipy)2(H2O). Z Kristal. 2005;220(2):177–82. doi:10.1524/zkri.220.2.177.59141.

    Article  CAS  Google Scholar 

  30. Spacu F, Antonescu E. Complexes of lanthanide haloacetates with 1,10-phenanthroline and 2,2′-bipyridine. Rev Roum Chim. 1969;14:201–7.

    CAS  Google Scholar 

  31. Hart FA, Laming J. Lanthanide complexes-III: complexes of 2,2′-dipyridyl with lanthanide chlorides, thiocyanates, acetates and nitrates. J Nucl Chem. 1965;27:1825–9. doi:10.1016/0022-1902(65)80326-8.

    Article  CAS  Google Scholar 

  32. Kokonov JV, Segal EJ. Thermal decomposition of complexes of neodynium and erbium with 1,10-phenanthroline and 2,2′-bipyridyl. Rev Roum Chim. 1971;16:1647–50.

    Google Scholar 

  33. Czylkowska A, Czakis-Sulikowska D, Kaczmarek A, Markiewicz M. Thermal behavior and other properties of Pr(III), Sm(III), Eu(III), Gd(III), Tb(III) complexes with 4,4′-bipyridine and trichloroacetates. J Therm Anal Calorim. 2011;105:331–9. doi:10.1007/s10973-011-1462-4.

    Article  CAS  Google Scholar 

  34. Czakis-Sulikowska D, Czylkowska A, Markiewicz M. Synthesis, characterization and thermal decomposition of yttrium and light lanthanides with 4,4′-bipyridine and dichloroacetates. Pol J Chem. 2007;81:1267–75.

    CAS  Google Scholar 

  35. Kruszyński R, Czylkowska A, Czakis-Sulikowska D. A novel carboxylic coordination polymer of samarium(III): [Sm(H2O)(4,4′-bipyridine)(CCl2HCOO)3]n. J Coord Chem. 2006;59:681–90. doi:10.1080/00958970500345356.

    Article  Google Scholar 

  36. Czakis-Sulikowska D, Czylkowska A, Markiewicz M, Frajtak M. Synthesis and properties of complexes of Gd(III), Tb(III), Ho(III) and Tm(III) with 4,4′-bipyridine and dichloroacetates. Pol J Chem. 2009;83:1893–901.

    CAS  Google Scholar 

  37. Czylkowska A, Markiewicz M. Coordination behaviour and thermolysis of some rare-earth complexes with 4,4′-bipyridine and di- or trichloroacetates. J Therm Anal Calorim. 2010;100:717–23. doi:10.1007/s10973-009-0182-5.

    Article  CAS  Google Scholar 

  38. Czylkowska A, Czakis-Sulikowska D, Kruszyński R, Markiewicz M. Synthesis, crystal structure and other properties of the complexes of Er(III), Yb(III) and Lu(III) with 4,4′-bipyridine and dichloroacetates. Struct Chem. 2009;21:415–23. doi:10.1007/s11224-009-9545-6.

    Article  Google Scholar 

  39. Powder Diffraction File, PDF-2, release 2004. The International Centre for Diffraction Data (ICDD), Newton Square.

  40. Geary WI. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev. 1971;7:81–122. doi:10.1016/S0010-8545(00)80009-0.

    Article  CAS  Google Scholar 

  41. Pearce CK, Grosse DW, Hessel W. Effect of molecular structure on infrared spectra of six isomers of bipyridine. Chem Eng Data. 1970;15:567–70. doi:10.1021/je60047a042.

    Article  CAS  Google Scholar 

  42. Ahuja IS, Singh R, Yadava GL. Structural information on manganese(II) chloride, thiocyanate, acetate and sulphate complexes with 2,2′-bipyridyl, 4,4′-bipyridyl and their dioxides fr. J Mol Struct. 1981;74:143–51.

    Article  CAS  Google Scholar 

  43. Deacon GB, Philips RI. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–50. doi:10.1016/S0010-8545(00)80455-5.

    Article  CAS  Google Scholar 

  44. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley; 2009.

    Google Scholar 

  45. Manhas BS, Trikha AK. Relationships between the direction of shifts in the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Indian J Chem. 1982;59:315–9.

    CAS  Google Scholar 

  46. Brzyska W, Ożga W. Spectral, magnetic and thermal investigations of some d-electron element 3-methoxy-4-methylbenzoates. J Therm Anal Calorim. 2006;84:385–9. doi:10.1007/s10973-005-6855-9.

    Article  CAS  Google Scholar 

  47. Zelenak V, Vargova Z, Gyoryova K. Correlation of infrared spectra of zinc(II) carboxylates with their structures. Spectrochim Acta A. 2007;66:262–72. doi:10.1016/j.saa.2006.02.050.

    Article  CAS  Google Scholar 

  48. Brzyska W, Dębska E, Szczotka M. New complexes of rare earth elements with methylsuccinic acid. Pol J Chem. 2001;75:1393–9.

    CAS  Google Scholar 

  49. Schultze D. Differential thermoanalyse. Berlin: VEB Deutscher Verlag der Wissenschaften; 1974.

    Google Scholar 

  50. Liptay G, Kenessey G, Bihatsi L, Wadsten T, Mink J. Pyridine type complexes of transition-metal-halides. Preparation, characterization and thermal analysis studies of cobalt(II)-chlorides with 2,3,4-methylpyridines. J Therm Anal Calorim. 1992;38:899–905.

    Article  CAS  Google Scholar 

  51. Zapata B, Balmaseda J, Fregoso-Israel E, Torres-Garcia E. Thermo-kinetics study of orange peel in air. J Therm Anal Calorim. 2009;98:309–15.

    Article  CAS  Google Scholar 

  52. Souza BS, Moreira Ana Paula D, Teixeira Ana Maria RF. TG-FTIR coupling to monitor the pyrolysis products from agricultural residues. J Therm Anal Calorim. 2009;97:637–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The helpful assistance of MSc Mirosława Markiewicz is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Czylkowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czylkowska, A. New complexes of heavy lanthanides with 4,4′-bipyridine and trichloroacetates. J Therm Anal Calorim 110, 1299–1308 (2012). https://doi.org/10.1007/s10973-011-2041-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2041-4

Keywords

Navigation