Skip to main content
Log in

Clay minerals in historic buildings

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Although identified in heritage stones, clays are not always taken into full account in terms of negative effects due to their swelling ability (Delgado Rodrigues, Materiales de Construcción 51:183–195, 2001). The main purpose of this study is to identify clays in welded tuffs of three different historic monuments located in the city of Guanajuato, Mexico, and to establish the clays’ contribution to the deterioration of the monuments by their swelling behavior. Thermal analysis, differential thermal analysis (DTA), thermogravimetry (TG), and dynamic mechanical analysis (DMA), as well as supplementing data with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and environmental scanning electron microscopy (ESEM), have been used. Data suggest that clays present in welded tuffs of the historic monuments studied contribute to increased deterioration through osmotic swelling in two of the three monuments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Funiciello R, Heiken G, Levich R, Obenholzner J, Petrov V. Construction in regions with tuff deposits. In: Heiken G, editor. Tuffs: their properties, uses, hydrology, and resources. Colorado: The Geological Society of America; 2006. p. 119–26.

    Chapter  Google Scholar 

  2. Ostromouv M, Garduño-Monroy VH, Carreon-Nieto H, Lozano-Santa Cruz R. Mineralogía y geoquímica de los procesos de degradación en monumentos históricos: primer acercamiento a un caso mexicano (Morelia, Michoacán). Rev Mex Cienc Geol. 2003;20:223–32.

    Google Scholar 

  3. Grissom CA. The deterioration and treatment of volcanic stone: a review of the literature. In: Charola AE, Koestler RJ, Lomardi G, editors. Lavas and volcanic tuffs. Rome: International Center for the Study of the Preservation of Cultural Property; 1994. p. 3–29.

    Google Scholar 

  4. Berner RA. A model of Atmospheric CO2 over Phanerozoic Time. Am J Sci. 1991;291:339–76.

    Article  CAS  Google Scholar 

  5. Alonso E, Martínez L. The role of environmental sulfur on degradation of ignimbrites of the Cathedral in Morelia, Mexico. Build Environ. 2003;38:861–7.

    Google Scholar 

  6. Simão J, Ruiz-Agudo E, Rodríguez-Navarro C. Effects of particulate matter from gasoline and diesel vehicle exhaust emissions on silicate stones sulfation. Atmos Environ. 2006;40:6905–17.

    Article  Google Scholar 

  7. Schiavon N. Kaolinisation of granite in an urban environment. Environ Geol. 2007;52:399–407.

    Google Scholar 

  8. Kawano M, Tomita K, Shinohara Y. Analytical electron microscopic study of the noncrystalline products formed at early weathering stages of volcanic glass. Clays Clay Miner. 1997;45:440–7.

    Article  CAS  Google Scholar 

  9. Steindlberger E. Volcanic tuffs from Hesse (Germany) and their weathering behaviour. Environ Geol. 2004;46:378–90.

    Article  CAS  Google Scholar 

  10. Velde B, Meunier A. The origin of clay minerals in soils and weathered rocks. Berlin: Springer-Verlag; 2008.

    Book  Google Scholar 

  11. Srodon J. X-ray identification of randomly interstratified illite–smectite in mixtures with discrete illite. Clay Miner. 1981;16:297–304.

    Article  CAS  Google Scholar 

  12. Siegesmund S, Weiss T, Vollbrecht A. Natural stone, weathering phenomena, conservation strategies and case studies: introduction. In: Siegesmund S, Weiss T, Vollbrecht A, editors. Natural stone, weathering phenomena, conservation strategies and case studies. UK: Geological Society of London; 2003. p. 1–7.

  13. Veniale F, Setti M, Rodríguez-Navarro C, Lodola S. Procesos de alteración asociados al contenido de minerales arcillosos en materiales pétreos (Role of clay constituents in Stone decay processes). Mater Constr. 2001;51:163–82.

    Article  CAS  Google Scholar 

  14. Delgado Rodrigues J. Swelling behaviour of stones and its interests in conservation: an appraisal. Mater Constr. 2001;51:183–95.

    Article  CAS  Google Scholar 

  15. Jiménez-González I, Rodríguez-Navarro C, Scherer GW. Role of clay minerals in the physicomechanical deterioration of sandstone. J Geophys Res. 2008; F02021. doi:10.1029/2007JF000845.

  16. Madsen FT, Müller-Vonmoos M. The swelling behaviour of clays. Appl Clay Sci. 1989;4:143–56.

    Article  CAS  Google Scholar 

  17. Foster MD. The relation between composition and swelling in clays. Clays Clay Miner. 1954;3:205–20.

    Article  Google Scholar 

  18. Jiménez-González I. PhD Thesis. Universidad de Granada; 2008.

  19. Rodríguez-Navarro C, Sebastian E, Doehne E, Winell WS. The role of sepiolite–paligorskite in the decay of ancient Egyptian limestone sculptures. Clays Clay Miner. 1998;46:414–22.

    Article  Google Scholar 

  20. Weiss T, Siegesmund S, Kirchner D, Sippel J. Insolation weathering and hygric dilatation: two competitive factors in stone degradation. Environ Geol. 2004;46:402–13.

    Article  CAS  Google Scholar 

  21. Wangler T, Scherer GW. Clay swelling mechanism in clay-bearing sandstones. Environ Geol. 2008;56:529–34.

    Google Scholar 

  22. Wheeler G. Alkoxysilanes and the consolidation of stone. Los Angeles: Getty Publications; 2005.

    Google Scholar 

  23. Scherer GW. Internal stress and cracking in stone and masonry. In: Konsta-Gdoutos MS, editor. Monitoring and modeling concrete properties. The Netherlands: Springer; 2006. p. 633–41.

    Chapter  Google Scholar 

  24. Stück H, Forgó LZ, Rüdrich J, Siegesmund S, Török Á. The behaviour of consolidated volcanic tuffs: weathering mechanisms under simulated laboratory conditions. Environ Geol. 2008;56:699–713.

  25. Wendler R, Snethlage E. Moisture cycles and sandstone degradation. In: Baer NS, Snethlage R, editors. Saving our architectural heritage: the conservation of historic stone structures. Chichester: Wiley; 1997. p. 7–24.

    Google Scholar 

  26. Reyes-Z V, Cervantes-Jáuregui J. In: Proceedings of the 41st congress IUPAC—chemistry protecting health, natural environment and cultural heritage, Torino, Italy. 5–11 August 2007.

  27. Shoval S, Gaft M, Beck P, Kirsh Y. Thermal behavior of limestone and monocrystalline calcite tempers during firing and their use in ancient vessels. J Thermal Anal. 1993;40:263–73.

    Article  CAS  Google Scholar 

  28. Cardiano P, Sergi S, De Stefano C, Ioppolo S, Piraino P. Investigations on ancient mortars from the Basilian monastery of Fragala. J Therm Anal Calorim. 2008;91:477–85.

    Article  CAS  Google Scholar 

  29. Duran A, Perez-Maqueda LA, Poyato J, Perez-Rodriguez JL. A thermal study approach to roman age wall painting mortars. J Therm Anal Calorim. 2010;99:803–9.

    Article  CAS  Google Scholar 

  30. Todor DN. Thermal analysis of minerals. England: Abacus Press; 1976.

    Google Scholar 

  31. Van der Marel and Beutelspacher. Atlas of infrared spectroscopy of clay minerals and their admixtures. Amsterdam: Elsevier; 1976.

  32. Madejová J. FTIR techniques in clay mineral studies. Vib Spectrosc. 2003;31:1–10.

    Article  Google Scholar 

  33. Smykatz-Kloss W, Heide K, Klinke W. Applications of thermal methods in the geosciences. In: Brown ME, Gallagher PK, editors. Handbook of thermal analysis and calorimetry, vol. 2: applications to inorganic and miscellaneous materials. Amsterdam: Elsevier; 2003. p. 451–594.

    Chapter  Google Scholar 

  34. Morris KA, Shepperd CM. The role of clay minerals in influencing porosity and permeability characteristics in the Bridport Sands of Wytch Farm, Dorset. Clay Miner. 1982;17:41–54.

    Article  Google Scholar 

  35. Papoulis D, Tsolis-Katagas P, Katagas C. Progressive stages in the formation of kaolin minerals of different morphologies in the weathering of plagioclase. Clays Clay Miner. 2004;52:275–86.

    Article  CAS  Google Scholar 

  36. De la Fuente S, Cuadros J, Fiore S, Linares J. Electron microscopy study of volcanic tuff alteration to illite-smectite under hydrothermal conditions. Clays Clay Miner. 2000;48:339–50.

    Article  Google Scholar 

  37. Meunier A, Sardini P, Robinet JC, Prêt D. The petrography of weathering processes: facts and outlooks. Clay Miner. 2007;42:415–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor George Wheeler for his assistance with separation of clays and XRD analysis. Also, they would like to thank Prof. George Scherer for swelling measurements. Veridiana Reyes-Zamudio is grateful to Consejo Nacional de Ciencia y Tecnología (Mexico), for the fellowship to perform PhD studies; and also, to Professor George Wheeler for the support and advice during research stays at Columbia University and the Scientific Department of the Metropolitan Museum of Art, New York (USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Cervantes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reyes-Zamudio, V., Angeles-Chávez, C. & Cervantes, J. Clay minerals in historic buildings. J Therm Anal Calorim 104, 405–413 (2011). https://doi.org/10.1007/s10973-010-1041-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1041-0

Keywords

Navigation