Skip to main content
Log in

Physicochemical properties of non-stoichiometric oxides

Mixed conductors: Part II

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

One of the most important challenges with solid oxide fuel cells (SOFC) is to find cathode materials with high enough catalytic activity for the dissociation of the molecular oxygen. Oxide mixed conductors with the perovskite structure (ABO3) and high Co content in the B site have been extensively studied to be used as cathode in SOFC. This is the second part of a review of high temperature properties of two mixed conductors systems. The first part was focused on the n = 2 Sr3FeMO6+δ (M = Fe, Co, Ni) Rudlesdden Popper phases, while in this paper we discuss the thermodynamic and transport properties of the perovskite solid solution Sr1−x La x Fe0.2Co0.8O3−δ (0 ≤ x ≤ 0.4) in the temperature range 773 ≤ T ≤ 1173 K. In particular, the interest has been focused on the x = 0 sample, which exhibits large ionic conductivity values (σi ~1 S cm−1), but suffers a structural transformation from cubic to orthorhombic symmetry because the ordering of the oxygen vacancies when the oxygen partial pressure decreases. Measurements of the oxygen chemical potential (\( \mu_{{{\text{O}}_{2} }} \)) as function of oxygen content and temperature, coupled with high temperature X-ray diffraction data, permitted us to broaden the knowledge of the T–δ–p(O2) phase diagram for the x = 0 sample. In addition, we have investigated the effects of the La incorporation on the stability range of the cubic phases of the Sr1−x La x Fe0.2Co0.8O3−δ solid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Skinner SJ. Recent advances in perovskite-type materials for solid oxide fuel cell cathodes. Int J Inorg Mater. 2001;3:113–21.

    Article  CAS  Google Scholar 

  2. Bouwmeester HJ, Burggraf AJ. In: Gellings PJ, Bouwmeester HJ, editors. The CRC handbook of solid state electrochemistry. Boca Raton, FL: CRS Press; 1997.

    Chapter  Google Scholar 

  3. Steel BCH, Heinzel A. Materials for fuel-cell technologies. Nature. 2001;414:345–52.

    Article  Google Scholar 

  4. Larminie J, Dicks A. Fuel cells systems explained. 2nd ed. New York: Wiley; 2003.

    Google Scholar 

  5. Caneiro A, Prado F, Serquis A. Physical properties of non-stoichiometrics oxides: superconducting oxides. J Therm Anal Calorim. 2006;83(2):507–18.

    Article  CAS  Google Scholar 

  6. González Arias A, Torres C, de Francisco C, Muñoz JM, Hernández Gómez P, Alejos O, Montero O, Iñiguez JI. Defect concentration in Ti-substituted YIG from TG curves. J Therm Anal Calorim. 2006;86(1):195–8.

    Article  Google Scholar 

  7. Grzesik Z, Mrowec S. Kinetics and thermodynamics of point defects in non-stoichiometric metal oxides and sulphides. J Therm Anal Calorim. 2007;90(1):269–82.

    Article  CAS  Google Scholar 

  8. Malta LFB, Caffarena VR, Medeiros ME, Ogasawara T. TA of non-stoichiometric ceria obtained via hydrothermal synthesis. J Therm Anal Calorim. 2004;75:901–10.

    Article  CAS  Google Scholar 

  9. Aggarwal S, Töpfer J, Tsai T-L, Dieckmann R. Point defects and transport in binary and ternary, non-stoichiometric oxide. Solid State Ion. 1997;101–103:321–31.

    Google Scholar 

  10. Bishop SR, Duncan KL, Wachsman ED. Defect equilibria and chemical expansion in non-stoichiometric undoped and gadolinium-doped cerium oxide. Electrochim Acta. 2009;54(5):1436–43.

    Article  CAS  Google Scholar 

  11. Hashimoto T, Yoshinaga M, Ueda Y, Komazaki K, Asaoka K, Wang S. Characterization of phase transition of Ba2−x Sr x In2O5 by thermal analysis and high temperature X-ray diffraction. J Therm Anal Calorim. 2002;69:909–17.

    Article  CAS  Google Scholar 

  12. Vashook VV, Zinkevich MV, Zonov YG, Kharton VV, Tsipis EV, Yaremchenko AA, Marozau IP, Viskup AP, Frade JR. Naumovich EN Phase relations in oxygen-deficient SrCoO2.5−δ. Solid State Ion. 1999;116(1–2):129–38.

    Article  CAS  Google Scholar 

  13. Rycerz L, Ingier-Stocka E, Gadzuric S, Gaune-Escard M. Review of the thermodynamic and transport properties of EuBr2-RbBr binary system. J Therm Anal Calorim. 2010. doi:10.10007/s10973-010-0790-0.

  14. Kumekawa Y, Hirai M, Kobayashi Y, Endoh S, Oikawa E, Hashimoto T. Evaluation of thermodynamic and kinetic stability of CuAlO2 and CuGaO2. J Therm Anal Calorim. 2010;99:57–63.

    Article  CAS  Google Scholar 

  15. Caneiro A, Bonnat M, Fouletier J. Measurement and regulation of oxygen content in selected gases using solid electrolyte cells. IV. Accurate preparation of CO2–CO and H2O–H2 mixtures. J Appl Electrochem. 1981;11:83–90.

    Article  CAS  Google Scholar 

  16. Caneiro A, Bavdaz P, Fouletier J, Abriata JP. Adaptation of an electrochemical system for measurement and regulation of oxygen partial pressure to a symmetrical thermogravimetric analysis system developed using a Cahn 1000 electrobalance. Rev Sci Instrum. 1982;53:1072–5.

    Article  CAS  Google Scholar 

  17. Qiu L, Lee TH, Liu L–M, Yang YL, Jacobson AJ. Oxygen permeation studies of SrCo0.8Fe0.2O3−δ. Solid State Ion. 1995;76:321–9.

    Article  CAS  Google Scholar 

  18. Prado F, Armstrong T, Caneiro A, Manthiram A. Structural stability and oxygen permeation properties of Sr3−x La x Fe2−y Co y O7-δ (0 ≤ x ≤ 0.3 and 0 ≤ y ≤ 1.0). J Electrochem Soc. 2001;148:J7–14.

    Article  CAS  Google Scholar 

  19. Liu LM, Lee TH, Qiu L, Yang YL, Jacobson AJ. A thermogravimetric study of the phase diagram of strontium cobalt iron oxide, SrCo0.8Fe0.2O3−δ. Mater Res Bull. 1996;31:29–35.

    Article  CAS  Google Scholar 

  20. Kruidhof H, Bouwmeester HJM, van Doorn RHE, Burggraf AJ. Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides. Solid State Ion. 1993;63–65:816–22.

    Article  Google Scholar 

  21. Pei S, Kleefisch MS, Kobylinski TP, Faber J, Udovich CA, Zhang-McCoy V, Dabrowski B, Balachandran U, Mieville RL, Poeppel RB. Failure mechanisms of ceramic membrane reactors in partial oxidation of methane to synthesis gas. Catal Lett. 1994;30:201–12.

    Article  CAS  Google Scholar 

  22. Grunbaum N, Mogni L, Prado F, Caneiro A. Phase equilibrium and electrical conductivity of SrCo0.8Fe0.2O3−δ. J Solid State Chem. 2004;177(7):2350–7.

    Article  CAS  Google Scholar 

  23. Hodges JP, Short S, Jorgensen JD, Xiong X, Dabrowski B, Mini SM, Kimball CW. Evolution of oxygen-vacancy ordered crystal structures in the perovskite series Sr(n)Fe(n)O(3n − 1) (n = 2, 4, 8, and ∞), and the relationship to electronic and magnetic properties. J Solid State Chem. 2000;151:190–209.

    Article  CAS  Google Scholar 

  24. Knittel DR, Pack SP, Lin SH, Eyring L. A thermodynamic model of hysteresis in phase transitions and its application to rare earth oxide systems. J Chem Phys. 1977;67:134–42.

    Article  CAS  Google Scholar 

  25. Inaba H, Pack SP, Lin SH, Eyring L. A kinetic study of oxidation of praseodymium oxides: PrO1.714+0.032 O2→PrO1.778. J Solid State Chem. 1980;33:295–304.

    Article  CAS  Google Scholar 

  26. Porter DA, Easterling KE. Phase transformations in metals and alloys. London: Chapman & Hall; 1991.

    Google Scholar 

  27. Tikhonovich VN, Naumovich EN, Logvinovich DI, Kharton VV, Vecher AA. Oxygen deficiency and phase transitions in SrCo1−xy Fe x Cr y O3−δ (x = 0.10–0.40, y = 0–0.05). J Solid State Electrochem. 2003;7:77–82.

    CAS  Google Scholar 

  28. IUPAC. Commission on thermodynamics, “oxygen, international thermodynamic tables of the fluid state–9”. Oxford: Blackwell Scientific; 1987.

    Google Scholar 

  29. Mizusaki J, Mima Y, Yamauchi S, Fueki K, Tawaga H. Nonstoichiometry of the perovskite-type oxides La1−x Sr x CoO3−δ. J Solid State Chem. 1989;80:102–11.

    Article  CAS  Google Scholar 

  30. Mitberg EB, Patrakeev MV, Leonidov IA, Kozhevnikov VL, Poeppelmeier KR. High-temperature electrical conductivity and thermopower in nonstoichiometric La1−x Sr x CoO3−δ (x = 0.6). Solid State Ion. 2000;130:325–30.

    Article  CAS  Google Scholar 

  31. Huang K, Wan J, Goodenough JB. Oxide-ion conducting ceramics for solid oxide fuel cells. J Mater Sci. 2001;36:1093–8.

    Article  CAS  Google Scholar 

  32. Prado F, Grunbaum N, Caneiro A, Manthiram A. Effect of La3+ doping on the perovskite-to-brownmillerite transformation in Sr1−x La x Co0.8Fe0.2O3−δ (0 ≤ x≤0.4). Solid State Ion. 2004;167(1–2):147–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CNEA (Argentine Atomic Energy Commission), CONICET, and Universidad Nacional de Cuyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Caneiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caneiro, A., Mogni, L., Grunbaum, N. et al. Physicochemical properties of non-stoichiometric oxides. J Therm Anal Calorim 104, 781–788 (2011). https://doi.org/10.1007/s10973-010-1008-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1008-1

Keywords

Navigation