Skip to main content
Log in

Porous layered MOFs (Cu-BDC) for highly efficient uranyl-ion adsorption from aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study synthesized a layered porous MOFs Cu-BDC by a simple solvothermal method, and the adsorption effect of materials on U(VI) were investigated by static adsorption experiments. The results show that the adsorption capacity of U(VI) reaches the maximum at 298.15 K pH = 6, with a maximum value of 1128.35 mg·g−1. Langmuir and Freundlich isotherm equations were used to fit the thermodynamic data, which were more consistent with Langmuir Isotherm model. Adsorption kinetics experiments show that Cu-BDC reaches adsorption equilibrium at 200 min, and the adsorption process is closer to the Pseudo-first-order kinetic equation, and the adsorption process is dominated by chemical control, physical control, and chemical control work together. Thermodynamics results indicate the spontaneous nature of U(VI) adsorption process onto Cu-BDC. In addition, The unique porous Layered structure and abundant active sites are the reasons for the high adsorption capacity of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Michaelides EE, Michaelides DN (2020) Impact of nuclear energy on fossil fuel substitution. Nucl Eng Des 366:110742. https://doi.org/10.1016/j.nucengdes.2020.110742

    Article  CAS  Google Scholar 

  2. Wang Z, Meng Q, Ma R, Wang Z, Yang Y, Sha H, Ma X, Ruan X, Zou X, Yuan Y, Zhu G (2020) Constructing an ion pathway for uranium extraction from seawater. Chem 6:1683–1691. https://doi.org/10.1016/j.chempr.2020.04.012

    Article  CAS  Google Scholar 

  3. Sun Z, Chen D, Chen B, Kong L, Su M (2018) Enhanced uranium(VI) adsorption by chitosan modified phosphate rock. Colloids Surf, A 547:141–147. https://doi.org/10.1016/j.colsurfa.2018.02.043

    Article  CAS  Google Scholar 

  4. Li N, Gao P, Chen H, Li F, Wang Z (2022) Amidoxime modified Fe3O4@TiO2 particles for antibacterial and efficient uranium extraction from seawater. Chemosphere 287:137. https://doi.org/10.1016/j.chemosphere.2021.132137

    Article  CAS  Google Scholar 

  5. Tsouris C (2017) Uranium extraction: fuel from seawater. Nat Energy 2:7546. https://doi.org/10.1038/nenergy.2017.22

    Article  Google Scholar 

  6. Hu J, Lv Y, Cui W, Chen W, Li S (2019) Study on treatment of uranium-containing wastewater by biosorption. IOP Conference Series: Earth and Environmental Science 330:032029. https://doi.org/10.1088/1755-1315/330/3/032029

    Article  Google Scholar 

  7. Faa A, Gerosa C, Fanni D, Floris G, Eyken PV, Lachowicz JI, Nurchi VM (2018) Depleted uranium and human health. Curr Med Chem 25:49–64. https://doi.org/10.2174/0929867324666170426102343

    Article  CAS  PubMed  Google Scholar 

  8. Rump A, Eder S, Lamkowski A, Hermann C, Abend M, Port M (2019) A quantitative comparison of the chemo—and radiotoxicity of uranium at different enrichment grades. Toxicol Lett 313:159–168. https://doi.org/10.1016/j.toxlet.2019.07.004

    Article  CAS  PubMed  Google Scholar 

  9. Kulkarni S, Ballal A, Apte SK (2013) Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans. J Hazard Mater 262:853–861. https://doi.org/10.1016/j.jhazmat.2013.09.057

    Article  CAS  PubMed  Google Scholar 

  10. Zhu X, Alexandratos SD (2015) Development of a new ion-exchange/coordinating phosphate ligand for the sorption of U(VI) and trivalent ions from phosphoric acid solutions. Chem Eng Sci 127:126–132. https://doi.org/10.1016/j.ces.2015.01.027

    Article  CAS  Google Scholar 

  11. Tang N, Liang J, Niu C, Wang H, Luo Y, Xing W, Ye S, Liang C, Guo H, Guo J, Zhang Y, Zeng G (2020) Amidoxime-based materials for uranium recovery and removal. Journal of Materials Chemistry A 8:7588–7625. https://doi.org/10.1039/c9ta14082d

    Article  CAS  Google Scholar 

  12. Li N, Yang L, Ji X, Ren J, Gao B, Deng W, Wang Z (2020) Bioinspired succinyl-β-cyclodextrin membranes for enhanced uranium extraction and reclamation. Environ Sci Nano 7:3124–3135. https://doi.org/10.1039/d0en00709a

    Article  CAS  Google Scholar 

  13. Liu T, Zhang X, Wang H, Chen M, Yuan Y, Zhang R, Xie Z, Liu Y, Zhang H, Wang N (2021) Photothermal enhancement of uranium capture from seawater by monolithic MOF-bonded carbon sponge. Chem Eng J 412:1221. https://doi.org/10.1016/j.cej.2021.128700

    Article  CAS  Google Scholar 

  14. Yuan Y, Zhao S, Wen J, Wang D, Guo X, Xu L, Wang X, Wang N (2019) Rational design of porous nanofiber adsorbent by blow-spinning with ultrahigh uranium recovery capacity from seawater. Adv Func Mater 29:1258. https://doi.org/10.1002/adfm.201805380

    Article  CAS  Google Scholar 

  15. Ma F, Gui Y, Liu P, Xue Y, Song W (2020) Functional fibrous materials-based adsorbents for uranium adsorption and environmental remediation. Chem Eng J 390:124597. https://doi.org/10.1016/j.cej.2020.124597

    Article  CAS  Google Scholar 

  16. Acharya R, Lenka A, Parida K (2021) Magnetite modified amino group based polymer nanocomposites towards efficient adsorptive detoxification of aqueous Cr (VI): A review. J Mol Liq. https://doi.org/10.1016/j.molliq.2021.116487

    Article  Google Scholar 

  17. Jun B-M, Lee H-K, Park S, Kim T-J (2021) Purification of uranium-contaminated radioactive water by adsorption: a review on adsorbent materials. Sep Purif Technol 278:119675. https://doi.org/10.1016/j.seppur.2021.119675

    Article  CAS  Google Scholar 

  18. Mohamud H, Ivanov P, Russell BC, Regan PH, Ward NI (2018) Selective sorption of uranium from aqueous solution by graphene oxide-modified materials. J Radioanal Nucl Chem 316:839–848. https://doi.org/10.1007/s10967-018-5741-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Banala UK, Das NPI, Toleti SR (2021) Microbial interactions with uranium: towards an effective bioremediation approach. Environ Technol Innov 21:101254. https://doi.org/10.1016/j.eti.2020.101254

    Article  CAS  Google Scholar 

  20. Zhao Z, Cheng G, Zhang Y, Han B, Wang X (2021) Metal-organic-framework based functional materials for uranium recovery: performance optimization and structure/functionality-activity relationships. ChemPlusChem 86:1177–1192. https://doi.org/10.1002/cplu.202100315

    Article  CAS  PubMed  Google Scholar 

  21. Kayan A (2018) Inorganic-organic hybrid materials and their adsorbent properties. Advanced Composites and Hybrid Materials 2:34–45. https://doi.org/10.1007/s42114-018-0073-y

    Article  CAS  Google Scholar 

  22. Islamoglu T, Goswami S, Li Z, Howarth AJ, Farha OK, Hupp JT (2017) Postsynthetic tuning of metal-organic frameworks for targeted applications. Acc Chem Res 50:805–813. https://doi.org/10.1021/acs.accounts.6b00577

    Article  CAS  PubMed  Google Scholar 

  23. Yang W, Pan Q, Song S, Zhang H (2019) Metal–organic framework-based materials for the recovery of uranium from aqueous solutions. Inorganic Chemistry Frontiers 6:1924–1937. https://doi.org/10.1039/c9qi00386j

    Article  CAS  Google Scholar 

  24. Kang Y-S, Lu Y, Chen K, Zhao Y, Wang P, Sun W-Y (2019) Metal–organic frameworks with catalytic centers: from synthesis to catalytic application. Coord Chem Rev 378:262–280. https://doi.org/10.1016/j.ccr.2018.02.009

    Article  CAS  Google Scholar 

  25. Mondol MMH, Jhung SH (2021) Adsorptive removal of pesticides from water with metal–organic framework-based materials. Chem Eng J 421:688. https://doi.org/10.1016/j.cej.2021.129688

    Article  CAS  Google Scholar 

  26. Gao M, Liu G, Gao Y, Chen G, Huang X, Xu X, Wang J, Yang X, Xu D (2021) Recent advances in metal-organic frameworks/membranes for adsorption and removal of metal ions. TrAC, Trends Anal Chem 137:226. https://doi.org/10.1016/j.trac.2021.116226

    Article  CAS  Google Scholar 

  27. Tchinsa A, Hossain MF, Wang T, Zhou Y (2021) Removal of organic pollutants from aqueous solution using metal organic frameworks (MOFs)-based adsorbents: a review. Chemosphere 284:131393. https://doi.org/10.1016/j.chemosphere.2021.131393

    Article  CAS  PubMed  Google Scholar 

  28. Carson CG, Hardcastle K, Schwartz J, Liu X, Hoffmann C, Gerhardt RA, Tannenbaum R (2009) Synthesis and structure characterization of copper terephthalate metal-organic frameworks. Eur J Inorg Chem 2009:2338–2343. https://doi.org/10.1002/ejic.200801224

    Article  CAS  Google Scholar 

  29. Zheng G, Xing Z, Gao X, Nie C, Xu Z, Ju Z (2021) Fabrication of 2D Cu-BDC MOF and its derived porous carbon as anode material for high-performance Li/K-ion batteries. Appl Surf Sci 559:701. https://doi.org/10.1016/j.apsusc.2021.149701

    Article  CAS  Google Scholar 

  30. Duan C, Li J, Yang P, Ke G, Zhu C, Zhang S (2019) A facile synthesis of hierarchically porous Cu-BTC for efficient removal of uranium(VI). J Radioanal Nucl Chem 323:317–327. https://doi.org/10.1007/s10967-019-06888-w

    Article  CAS  Google Scholar 

  31. Albolkany MK, Liu C, Wang Y, Chen CH, Zhu C, Chen X, Liu B (2021) Molecular surgery at microporous MOF for mesopore generation and renovation. Angew Chem Int Ed Engl 60:14601–14608. https://doi.org/10.1002/anie.202103104

    Article  CAS  PubMed  Google Scholar 

  32. Ahmed I, Hasan Z, Lee G, Lee HJ, Jhung SH (2022) Contribution of hydrogen bonding to liquid-phase adsorptive removal of hazardous organics with metal-organic framework-based materials. Chem Eng J 430:132–596. https://doi.org/10.1016/j.cej.2021.132596

    Article  CAS  Google Scholar 

  33. Zhan G, Fan L, Zhao F, Huang Z, Chen B, Yang X, Zhou S-f (2019) Fabrication of ultrathin 2D Cu-BDC nanosheets and the derived integrated MOF nanocomposites. Adv Func Mater 29:62. https://doi.org/10.1002/adfm.201806720

    Article  CAS  Google Scholar 

  34. Liu R, Wang ZQ, Liu QY, Luo F, Wang YL (2019) A zinc MOF with carboxylate oxygen-functionalized pore channels for uranium(VI) sorption. Eur J Inorg Chem 2019:735–739. https://doi.org/10.1002/ejic.201801295

    Article  CAS  Google Scholar 

  35. Rostamnia S, Alamgholiloo H, Liu X (2016) Pd-grafted open metal site copper-benzene-1,4-dicarboxylate metal organic frameworks (Cu-BDC MOF’s) as promising interfacial catalysts for sustainable Suzuki coupling. J Colloid Interface Sci 469:310–317. https://doi.org/10.1016/j.jcis.2016.02.021

    Article  CAS  PubMed  Google Scholar 

  36. Abdi S, Nasiri M, Mesbahi A, Khani MH (2017) Investigation of uranium (VI) adsorption by polypyrrole. J Hazard Mater 332:132–139. https://doi.org/10.1016/j.jhazmat.2017.01.013

    Article  CAS  PubMed  Google Scholar 

  37. Gupta NK, Kim S, Bae J, Sookim K (2021) Fabrication of Cu(BDC)0.5(BDC-NH2)0.5 metal-organic framework for superior H2S removal at room temperature. Chem Eng J. https://doi.org/10.1016/j.cej.2021.128536

    Article  Google Scholar 

  38. Xu C, Zhang W, Chen Y, Hu G, Liu R, Han Z (2019) Synthesis of NH2-MIL-125/NH2-MIL-125-P@TiO2 and its adsorption to uranyl ions. ChemistrySelect 4:12801–12806. https://doi.org/10.1002/slct.201902745

    Article  CAS  Google Scholar 

  39. Li JH, Yang LX, Li JQ, Yin WH, Tao Y, Wu HQ, Luo F (2019) Anchoring nZVI on metal-organic framework for removal of uranium(VI) from aqueous solution. J Solid State Chem 269:16–23. https://doi.org/10.1016/j.jssc.2018.09.013

    Article  CAS  Google Scholar 

  40. Lv Z, Wang H, Chen C, Yang S, Chen L, Alsaedi A, Hayat T (2019) Enhanced removal of uranium(VI) from aqueous solution by a novel Mg-MOF-74-derived porous MgO/carbon adsorbent. J Colloid Interface Sci 537:1–10. https://doi.org/10.1016/j.jcis.2018.11.062

    Article  CAS  Google Scholar 

  41. Yin Y, Yang H, Xin Z, Zhang C, Xu G, Wang Y, Dong G, Zhang X (2020) β-mCoPc/Cu-BDC composites for oxidation of benzyl alcohol to benzaldehyde. J Coord Chem 73:1503–1515. https://doi.org/10.1080/00958972.2020.1784406

    Article  CAS  Google Scholar 

  42. Hu G, Zhang W, Chen Y, Xu C, Liu R, Han Z (2020) Removal of boron from water by GO/ZIF-67 hybrid material adsorption. Environ Sci Pollut Res Int 27:28396–28407. https://doi.org/10.1007/s11356-020-08018-6

    Article  CAS  PubMed  Google Scholar 

  43. Li F, Li X, Cui P, Sun Y (2018) Retracted Article: plasma-grafted amidoxime/metal–organic framework composites for the selective sequestration of U(vi). Environ Sci Nano 5:2000–2008. https://doi.org/10.1039/c8en00583d

    Article  CAS  Google Scholar 

  44. Bi C, Zhang C, Ma F, Zhang X, Yang M, Nian J, Liu L, Dong H, Zhu L, Wang Q, Guo S, Lv Q (2021) Growth of a mesoporous Zr-MOF on functionalized graphene oxide as an efficient adsorbent for recovering uranium (VI) from wastewater. Microporous Mesoporous Mater 323:111–223. https://doi.org/10.1016/j.micromeso.2021.111223

    Article  CAS  Google Scholar 

  45. Liu L, Fang Y, Meng Y, Wang X, Ma F, Zhang C, Dong H (2020) Efficient adsorbent for recovering uranium from seawater prepared by grafting amidoxime groups on chloromethylated MIL-101(Cr) via diaminomaleonitrile intermediate. Desalination 478:114–300. https://doi.org/10.1016/j.desal.2019.114300

    Article  CAS  Google Scholar 

  46. Liu F, Xiong W, Liu J, Cheng Q, Cheng G, Shi L, Zhang Y (2018) Novel amino-functionalized carbon material derived from metal organic framework: a characteristic adsorbent for U(VI) removal from aqueous environment. Colloids Surf, A 556:72–80. https://doi.org/10.1016/j.colsurfa.2018.08.009

    Article  CAS  Google Scholar 

  47. Bhaumik M, Maity A, Srinivasu VV, Onyango MS (2012) Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers. Chem Eng J 181–182:323–333. https://doi.org/10.1016/j.cej.2011.11.088

  48. Prakash Tripathy S, Acharya R, Das M, Acharya R, Parida K (2020) Adsorptive remediation of Cr (VI) from aqueous solution using cobalt ferrite: kinetics and isotherm studies. Mater Today Proc 30:289–293. https://doi.org/10.1016/j.matpr.2020.01.534

    Article  CAS  Google Scholar 

  49. Wang Z, Liu Z, Ye T, Wang Y, Zhou L (2020) Removal of uranyl ions from aqueous media by tannic acid-chitosan hydrothermal carbon: equilibria, kinetics and thermodynamics. J Radioanal Nucl Chem 326:1843–1852. https://doi.org/10.1007/s10967-020-07452-7

    Article  CAS  Google Scholar 

  50. Xu C, Chen Y, Zhang W, Hu G, Liu R (2021) Layered nanoporous α-Gd2O3 prepared by a Gd–Organic framework template for U(VI) adsorption. ACS Appl Nano Mater 4:1104–1111. https://doi.org/10.1021/acsanm.0c02717

    Article  CAS  Google Scholar 

  51. Pukdeejorhor L, Adpakpang K, Ponchai P, Wannapaiboon S, Ittisanronnachai S, Ogawa M, Horike S, Bureekaew S (2019) Polymorphism of mixed metal Cr/Fe terephthalate metal-organic frameworks utilizing a microwave synthetic method. Cryst Growth Des 19:5581–5591. https://doi.org/10.1021/acs.cgd.9b00508

    Article  CAS  Google Scholar 

  52. Li W, Liu YY, Bai Y, Wang J, Pang H (2020) Anchoring ZIF-67 particles on amidoximerized polyacrylonitrile fibers for radionuclide sequestration in wastewater and seawater. J Hazard Mater 395:122692. https://doi.org/10.1016/j.jhazmat.2020.122692

Download references

Funding

This work is supported by National Natural Science Foundation of China (22266027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuantao Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Zhang, L. & Chen, Y. Porous layered MOFs (Cu-BDC) for highly efficient uranyl-ion adsorption from aqueous solutions. J Radioanal Nucl Chem 333, 2339–2350 (2024). https://doi.org/10.1007/s10967-024-09469-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-024-09469-8

Keywords

Navigation