Skip to main content
Log in

Roles of Junglas nigra husk extract microelements as radioprotectors: an in vivo model using 99mTc-radiopharmaceuticals

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The aim of this work was to analyze the multi-elemental composition of the extracts of J. nigra husk, with an assessment of the possible influence of their microelements on biochemical, toxicological and radioprotective effects of in rats exposed to radiation from 99mTc-radiopharmaceuticals. The elements in extract were quantified: microelements (Zn>Al>Se>Cu>Sr>Cr>Ni>Mn>Ba>I>V) and toxic-elements (Pb>Hg>Cd>As). The use of extract in rats showed no clinical evidence of toxicity in terms of biochemical parameters. The results showed significant alteration in the organs accumulation of 99mTc-radiopharmaceuticals. The results showed that extract of J. nigra husk may act as a potential radioprotector of organ system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Camara CRS, Schlegel V (2016) A review on the potential human health benefits of the black walnut: a comparison with the english walnuts and other tree nuts. Int J Food Prop 19:2175–2189

    Article  CAS  Google Scholar 

  2. Vu DC, Nguyen THD, Hoc TL (2020) An overview of phytochemicals and potential health-promoting properties of black walnut. RSC Adv 10:e33378

    Article  Google Scholar 

  3. Vu D, Vo P, Coggeshall M, Lin C-H (2018) Identification and characterization of phenolic compounds in black walnut kernels. J Agric Food Chem 66:4503–4511

    Article  CAS  PubMed  Google Scholar 

  4. Morgan EE, Perry JE (2010) Traditional medicinal plant use among Virginia’s powhatan indians. Banisteria 35:11–31

    Google Scholar 

  5. Paudel P, Satyal P, Dosoky NS, Maharjan S, Setzer WN (2013) Juglans regia and J. nigra, two trees important in traditional medicine: a comparison of leaf essential oil compositions and biological activities. Nat Prod Commun 8:1481–1486

    CAS  PubMed  Google Scholar 

  6. Wenzel J, Samaniego SC, Wang L, Burrows L, Tucker E, Dwarshuis N, Ammerman M, Zand A (2017) Antioxidant potential of Juglans nigra, black walnut, husks extracted using supercritical carbon dioxide with an ethanol modifier. Food Sci Nutr 5:223–232

    Article  CAS  PubMed  Google Scholar 

  7. Jomova K, Makova M, Alomar YS, Alwasel HS, Nepovimova E, Kuca K, Rhodes JC, Valko M (2022) Essential metals in health and disease. Chem-Biol Interact 367:e110173

    Article  Google Scholar 

  8. Stern RB, Solioz M, Krewski D, Aggett P, Aw CT, Baker S, Crump K, Durson M, Haber L, Hertzberg R (2007) Copper and human health: Biochemistry, genetics, and strategies for modelling dose-response relationships. J Toxicol Environ 10:157–222

    CAS  Google Scholar 

  9. Larsson CS, Virtanen JM, Mars M, Männisto JS, Pietinen P, Albanes D, Virtamo J (2008) Magnesium, calcium, potassium and sodium intakes and risk of stroke in male smokers. Arch Int Med 168:459–465

    Article  CAS  Google Scholar 

  10. Bettger WJ, Reeves PG, Savage JE, O’Dell BL (1980) Interaction of zinc and vitamin E in the chick. Proc Soc Exp Biol Med 163:432–436

    Article  CAS  PubMed  Google Scholar 

  11. Prasad AS (2008) Zinc in human health: effect of zinc on immune cells. Mol Med 14:353–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cosme P, Rodríguez BA, Espino J, Garrido M (2020) Plant phenolics: bioavailability as a key determinant of their potential health-promoting applications. Antioxidants 9:e1263

    Article  Google Scholar 

  13. Rorabaugh JM, Singh AP, Sherrell IM, Freeman MR, Vorsa N, Fitschen P, Malone C, Maher MA, Wilson T (2011) English and black walnut phenolic antioxidant activity in vitro and following human nut consumption. Food Nutri Sci 2:193–200

    Google Scholar 

  14. Gavrilović M, Rajković MK, Simić V, Jeremić S, Mirković S, Jevtić SA (2018) Optimization of ultrasound-assisted extraction of total polyphenolic compounds from Juglans nigra L. leaves. J Serb Chem Soc 83:1273–1284

    Article  Google Scholar 

  15. Rajkovic KM, Drobac MM, Milic PS, Vucic VM, Arsic AC, Peric M, Radunovic M, Jeremic SR, Arsenijevic JS (2023) Chemical characterization and antimicrobial activity of Juglans nigra L. nut and green husk. J Serb Chem Soc 88:603–614

    Article  CAS  Google Scholar 

  16. Rajković KM, Vasić M, Drobac M, Mutić J, Jeremić S, Simić V, Stanković J (2020) Optimization of extraction yield and chemical characterization of optimal extract from Juglans nigra L. leaves. Chem Eng Res Des 157:25–33

    Article  Google Scholar 

  17. Milić SP, Rajković MK, Nikolić SG, Jeremić S, Đurašević M (2023) Preparation of Juglans nigra L. husk extracts by applying an ultrasonic-assisted extraction method and process optimization of minerals extraction using response surface methodology. Chem Eng Res Des 191:439–445

    Article  Google Scholar 

  18. Rajković MK, Đurašević M, Markićević M, Milanović Z, Vranješ-Đurić S, Janković D, Stanković D, Obradović Z (2024) Optimization of radioprotective dose of Juglans nigra leaf extract using response surface methodology. J Environ Radioactiv 272:e107333

    Article  Google Scholar 

  19. Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB (2010) Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist 15:360–371

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pal S, Saha C, Dey SK (2013) Studies on black tea (Camellia sinensis) extract as a potential antioxidant and a probable radioprotector. Radiat Environmen Biophys 52:269–278

    Article  CAS  Google Scholar 

  21. Park E, Lee NH, Baik JS, Jee Y (2008) Elaeocarpus sylvestris modulates gamma-ray-induced immunosuppression in mice: implications in radioprotection. Phytother Res 22:1046–1051

    Article  CAS  PubMed  Google Scholar 

  22. Santos-Filho SD, Bernardo-Filho M (2009) Evaluation of consequences of the treatment of blood with extracts of Hypericum perforatum and Mentha crispa. Med Chem Res 18:545–554

    Article  CAS  Google Scholar 

  23. Dire G, Lima E, Gomes M, Bernardo-Filho M (2003) The effect of a chayotte (Sechium edule) extracts (decoct and macerated) on the labelling of blood elements with technetium-99m and on the biodistribution of the radiopharmaceutical sodium pertechnetate in mice: an in vitro and in vivo analysis. Pak J Nutr 2:221–227

    Article  Google Scholar 

  24. Souza DE, Pereira MO, Bernardo LC, Carmo FS, Fonseca AS, Bernardo-Filho M (2011) An experimental model to study the effects of a senna extract on the blood constituent labeling and biodistribution of a radiopharmaceutical in rats. Clinics (Sao Paulo) 66:483–486

    Article  PubMed  Google Scholar 

  25. Moreno SRF, Carvalho JJ, Nascimento ALR, Freitas RS, Dire GF, Lima EA, Lima-Filho GL, Rocha EK, Bernardo-Filho M (2004) Biodistribution of sodium pertechnetate and light microscopy of organs isolated from the rats: study of the effects of a ginkgo biloba extract. Pak J Nutr 3:64–67

    Google Scholar 

  26. Holanda CM, Costa MB, Silva NC, Silva MF Jr, Barbosa VS, Silva RP (2009) Medeiros Ada C. effect of an extract of Aloe vera on the biodistribution of sodium pertechnetate (Na99mTcO4) in rats. Acta Cir Bras 24:383–386

    Article  PubMed  Google Scholar 

  27. De K, Chandra S, Misra M (2008) Evaluation of the biological effect of brahmi (Bacopa monnieri Linn) extract on the biodistribution of technetium-99m radiopharmaceuticals. Life Sci J 5:45–49

    CAS  Google Scholar 

  28. Zora H, Muftuler FBZ, Demir I, Yurt KA, Ichedef C, Unak P (2012) Effect of a plant origin drug on the biodistribution of 99mTc-DTPA in Wistar albino rats. Rev Bras Farmacogn 22:344–349

    Article  CAS  Google Scholar 

  29. Holanda CM, Barbosa DA, Demeda VF, Bandeira FT, Medeiros HC, Pereira KR, Barbosa VS, Medeiros AC (2014) Influence of Annona muricata (soursop) on biodistribution of radiopharmaceuticals in rats. Acta Cir Bras 29:145–150

    Article  PubMed  Google Scholar 

  30. Lj JD, Dj DD (2005) Alteration of the organ uptake of the (99m)Tc-radiopharmaceuticals, (99m)Tc-DPD, (99m)Tc-DMSA, (99m)Tc-tin colloid and (99m)Tc-MAA, induced by the applied cytotoxic drugs methotrexate sodium and cyclophosphamide. Nucl Med Commun 26:415–419

    Article  Google Scholar 

  31. European Pharmacopoeia. 10th ed. Strasbourg: European Directorate for the Quality of Medicines (EDQM), 2020.

  32. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sampson BC (1993) Adverse reactions and drug interactions with radiopharmaceuticals. Drug Saf 8:280–294

    Article  CAS  PubMed  Google Scholar 

  34. Wang TS, Fawwaz RA, Esser PD, Johnson PM (1978) Altered body distribution of Tc-99m pertechnetate in iatrogenic hyperaluminaemia. J Nucl Med 19:381–383

    CAS  PubMed  Google Scholar 

  35. Moreno SRF, Carballo JJ, Nascimento AL, Pereira M, Rocha EK, Olej B, Caldas LQA, Bernardo-Filho M (2007) Experimental model to assess possible medicinal herb interaction with a radiocomplex: qualitative and quantitave analysis of kidney, liver and duodenum isolated from treated rats. Food Chem Toxicol 45:19–23

    Article  CAS  PubMed  Google Scholar 

  36. Yee CA, Lee MB, Blaufox MD (1981) Tc-99m DMSA renal uptake influence of biochemistry and physiological factors. J Nucl Med 22:1054–1058

    CAS  PubMed  Google Scholar 

  37. Tinggi U (2008) Selenium: Its role as antioxidant in human health. Environ Health Prev Med 13:102–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sieber F, Muir SA, Cohen EP, North PE, Fish BL, Irving AA, Mader M, Moulder JE (2009) High-dose selenium for the mitigation of radiation injury: a pilot study in a rat model. Radiat Res 171:368–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cai L, Cherian GM (2003) Zinc-metallothionein protects from DNA damage induced by radiation better than glutathione and copper-or cadmium-metallothioneins. Toxicol Lett 136:193–198

    Article  CAS  PubMed  Google Scholar 

  40. Crocker DG (1984) Nuclear reactor accidents–the use of KI as a blocking agent against radioiodine uptake in the thyroid—a review. Health Phys 46:1265–1279

    Article  CAS  PubMed  Google Scholar 

  41. Velauthapillai N, Barfett J, Jaffer H, Mikulis D, Murphy K (2017) Antioxidants taken orally prior to diagnostic radiation exposure can prevent DNA injury. J Vasc Interv Radiol 28:406–411

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Education, Science and Technology Development of the Republic of Serbia (Grant Nos. 451-03-66/2024-03/200017). We thank Zoran Paunovic and Miomir-Misa Rajkovic for kindly providing us fruit and leaves sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarina M. Rajković.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajković, K.M., Đurašević, M., Markićević, M. et al. Roles of Junglas nigra husk extract microelements as radioprotectors: an in vivo model using 99mTc-radiopharmaceuticals. J Radioanal Nucl Chem 333, 2297–2305 (2024). https://doi.org/10.1007/s10967-024-09464-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-024-09464-z

Keywords

Navigation