Skip to main content
Log in

Evaluation of natural radioactivity levels and related radiological hazards in marine sediment samples taken from Ahanta West in the Gulf of Guinea, Ghana

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A baseline study was carried out to determine the activity concentrations of 238U, 232Th-decay series and 40K in marine sediment. Surface sediments were taken from 29 sample stations. The average activity concentrations(Bq kg−1) of 238U (20.2), 232Th (7.4) and 40K (70.0) were below the world average with an annual effective dose (43.07 µSv y−1) unlikely to pose significant radiological risk. The ERICA tool application confirmed the potential dose rate to marine biota from radioactivity in sediments is unlikely to pose an appreciable risk. The findings offer a crucial radiological risk profile characteristic that may be used to compare current radioactivity levels in marine ecosystems to those in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. UNSCEAR (2000) Sources and effect of ionizing radiation: sources, vol 1. United Nations Publications, New York

    Google Scholar 

  2. Ravanat J, Breton J, Douki T, Gasparutto D, Grand A, Rachidi W, Sauvaigo S (2014) Radiation mediated formation of complex damage to DNA: a chemical aspect overview. Brit J Radiol 87(1035):20130715

    Article  PubMed  PubMed Central  Google Scholar 

  3. Livingston HD, Povinec PP (2000) Anthropogenic marine radioactivity. Ocean Coast Manage 43(8):689–712

    Article  Google Scholar 

  4. Uddin S, Fowler SW, Behbehani M, Al-Ghadban AN, Swarzenski PW, Al-Awadhi N (2020) A review of radioactivity in the Gulf region. Mar Pollut Bull 159:111481

    Article  CAS  PubMed  Google Scholar 

  5. Bantan RA, Khawfany AA, Basaham AS, Gheith AM (2021) Geochemical characterization of Al-Lith coastal sediments red sea Saudi Arabia. Arab J Sci Eng. https://doi.org/10.1007/s13369-019-04161-6

    Article  Google Scholar 

  6. Ekong GB, Akpa TC, Umaru IJ, Akpaowo MA, Yusuf SD, Benson NU (2021) Baseline radioactivity and associated radiological hazards in soils around a proposed nuclear power plant facility. South-South Nigeria J Afr Earth Sci 182:104289. https://doi.org/10.1016/j.jafrearsci.2021.104289

    Article  CAS  Google Scholar 

  7. Siraz MMM, Mahmud JA, Alam MS, Rashid MB, Hossain Z, Joydhar A, Khandaker MU, Razzaque MA, Rahman AM, Yeasmin S (2023) Baseline radioactivity in the five candidate sites for the second nuclear power plant in Bangladesh and concomitant hazards assessment. Int J Environ An Ch. https://doi.org/10.1080/03067319.2023.2207470

    Article  Google Scholar 

  8. Rashdi MRA, Mowafi WE, Alaabed S, Tokhi ME, Arabi AA (2021) Radiological baseline around the Barakah Nuclear Power Plant. UAE Arab J Chem 14(5):103125. https://doi.org/10.1016/j.arabjc.2021.103125

    Article  CAS  Google Scholar 

  9. IAEA (1989) Measurement of radionuclides in food and the environment. TECHNICAL REPORT SERIES No 295, International Atomic Energy Agency.

  10. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrials wastes and byproducts. Health Phys 48:87–95

    Article  CAS  PubMed  Google Scholar 

  11. UNSCEAR (1993) Sources, Effects and Risks of Ionization Radiation; Report to the General Assembly, with Scientific Annexes B: Exposures from Natural Radiation Sources. UNSCEAR, New York, NY, USA

    Google Scholar 

  12. El Mamoney M, Khater AE (2004) Environmental characterization and radio-ecological impacts of nonnuclear industries on the Red Sea coast. J Environ Radioactiv 73(2):151–168

    Article  Google Scholar 

  13. Xinwei L, Lingqing W, Xiaodan J (2006) Radiometric analysis of Chinese commercial granites. J Radioanal Nucl Ch 267(3):669–673

    Article  CAS  Google Scholar 

  14. Kurnaz A, Kucukomeroglu B, Keser R, Okumusoglu N, Korkmaz F, Karahan G, Cevik U (2007) Determination of radioactivity levels and hazards of soil and sediment samples in Firtina Valley (Rize, Turkey). Appl Radia Isotopes 65(11):1281–1289

    Article  CAS  Google Scholar 

  15. Sam AK, Ahamed MM, El Khangi FA, El Nigumi YO, Holm E (1998) Radioactivity levels in the Red Sea coastal environment of Sudan. Mar Pollut Bull 36(1):19–26. https://doi.org/10.1016/s0025-326x(98)90025-x

    Article  CAS  Google Scholar 

  16. Eisenlohr B, Hirdes W (1992) The structural development of the early Proterozoic Birimian and tarkwaian rocks of southwest Ghana. West Africa J Afr Earth Sci 14(3):313–325. https://doi.org/10.1016/0899-5362(92)90035-b

    Article  Google Scholar 

  17. AS-Subaihi FA, Salem TA, Ahmed MI (2023) Assessment of natural radioactivity level and associated radiological hazards in marine sediment samples collected from Abyan beach, Gulf of Aden, Yemen. Electron J Univ Aden Basic Appl Sci 4(1):18–30. https://doi.org/10.47372/ejua-ba.2023.1.217

    Article  Google Scholar 

  18. Otansev P, Taskın H, Bassarı A, Varinlioglu A (2016) Distribution and environmental impacts of heavy metals and radioactivity in sediment and seawater samples of the Marmara Sea. Chemosphere 154:266–275

    Article  CAS  PubMed  Google Scholar 

  19. Onjefu SA, Taole SH, Kgabi NA, Grant C, Antoine J (2017) Assessment of natural radionuclide distribution in shore sediment samples collected from the North Dune beach, Henties Bay, Namibia. J Radiat Res and Appl Sci 10:301–306

    CAS  Google Scholar 

  20. Al-Mur BA, Gad A (2022) Radiation Hazard from Natural Radioactivity in the marine sediment of Jeddah Coast, Red Sea. Saudi Arabia J Mar Sci Eng 10:1145

    Article  Google Scholar 

  21. Subber A, Jaber M, Al-Hashmi N (2015) Naturally radioactivity in marine sediment of Khor Abdulla Northern West of the Arabian Gulf. J Adv Phys 9(1):2340–2347

    Article  Google Scholar 

  22. Caridi F, Messina M, Faggio G, Santangelo S, Messina G, Belmusto G (2018) (2018) Radioactivity, radiological risk, and metal pollution assessment in marine sediments from Calabrian selected areas, southern Italy. Eur Phys J Plus 133:65. https://doi.org/10.1140/epjp/i2018-11887-1

    Article  CAS  Google Scholar 

  23. Islam A, Khandaker M, Miah M, Hossain S (2019) Radioactivity in coral skeletons and marine sediments collected from St Martin’s Island of Bangladesh. J Radioanal Nucl Ch 322:157–163

    Article  CAS  Google Scholar 

  24. Suliman II, Alsafi K (2021) Radiological risk to human and non-human biota due to radioactivity in coastal sand and marine sediments. Gulf of Oman Life 2021(11):549. https://doi.org/10.3390/life11060549

    Article  CAS  Google Scholar 

  25. Tholkappian M, Chandrasekaran A, Ganesh D, Chandramohan J, Harikrishnan N, Ravisankar R (2018) Determination of radioactivity levels and radiation hazards in the coastal sediment samples of Chennai coast, Tamilandu, India using Gamma ray spectrometry with statistical approach. J Rad Nucl https://doi.org/10.18576/jrna/030307

  26. Abbasi A, Zakaly HMH, Mirekhtiary F (2020) Baseline levels of natural radionuclides concentration in sediments East coastline of North Cyprus. Mar Pollut Bull 161:111793

    Article  CAS  PubMed  Google Scholar 

  27. UNSCEAR (2012) Effects and risks of ionizing radiation, United Nations Scientific Committee on the effect of atomic radiation report to the general assembly, with scientific annexes A and B series. Annex A- attributing health effects to ionizing radiation exposure and inferring risks. Annex B- uncertainties in risk estimates for radiation-induced cancer, United Nations New York

  28. Botwe BO, Schirone A, Delbono I, Barsanti M, Delfanti R, Kelderman P, Nyarko E, Lens PN (2017) Radioactivity concentrations and their radiological significance in sediments of the Tema Harbor (Greater Accra, Ghana). J Radiat Res Appl Sci 10:63–71

    CAS  Google Scholar 

  29. Abdi MR, Hassanzadeh S, Kamali M, Raji HR (2009) 238U, 232Th, 40K and 137Cs activity concentration along the southern coast of the Caspian Sea. Iran Marin Pollut Bull 58(5):658–662

    Article  CAS  Google Scholar 

  30. Al-Trabulsy H, Khater A, Habbani F (2011) Radioactivity levels and radiological hazard indices at the Saudi coastline of Gulf of Aqaba. Radiat Phy Ch 80(3):343–348

    Article  CAS  Google Scholar 

  31. Higgy R (2000) Natural radionuclides and plutonium isotopes in soil and shore sediments on Alexandria Mediterranean Sea coast of Egypt. Radiochim Acta 88(1):47–54

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that they received no funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvette Agyiriba Aggrey.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggrey, Y.A., Amo-Boateng, M., Kpeglo, D.O. et al. Evaluation of natural radioactivity levels and related radiological hazards in marine sediment samples taken from Ahanta West in the Gulf of Guinea, Ghana. J Radioanal Nucl Chem 333, 2281–2289 (2024). https://doi.org/10.1007/s10967-024-09454-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-024-09454-1

Keywords

Navigation