Skip to main content
Log in

Time evolution of rejected, coincidence spectra, registered on germanium gamma spectrometers with muon-sensitive veto shields

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This paper presents the effects of background reduction with anticoincidence logical condition between the sum of muon-sensitive large scintillator veto detectors and a germanium detector as well as the time evolution of rejected, muon-induced coincidence gamma spectra. A special attention is paid to neutron effects. The digital event-by-event registration used for data acquisition opens possibilities to study in an off-line mode the variety of effects related to the time structure of all signals registered by detectors. In our laboratory currently we use two such systems with in-house written software Veto for off-line data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

During the RANC-2023 Conference the invited talk entitled “The experience with five years exploitation of digital germanium gamma spectrometers with muon sensitive veto shields” was presented. The current paper is devoted only to one part of this talk, focused on analysis of gamma spectra from coincidences of gammas and muons, so it is about the cases, which are during normal operation rejected. The other parts of the conference talk were based on published already papers.

References

  1. Haines DK, Semkow TM, Khan AJ, Hoffman TJ, Meyer ST, Beach SE (2011) Muon and neutron-induced background in gamma-ray spectrometry. Nucl Instrum Methods 652(1):326–329. https://doi.org/10.1016/j.nima.2011.01.137

    Article  CAS  Google Scholar 

  2. Jovančević N, Krmar M, Mrda D, Slivka J, Bikit I (2010) Neutron induced background gamma activity in low-level Ge-spectroscopy systems. Nucl Instrum Meth A 612(2):303–308. https://doi.org/10.1016/j.nima.2009.10.059

    Article  CAS  Google Scholar 

  3. Kudryavtsev VA, Spooner NJ, McMillan JE (2003) Simulations of muon-induced neutron flux at large depths underground. Nucl Instrum Meth A 505(3):688–698. https://doi.org/10.1016/S0168-9002(03)00983-5

    Article  CAS  Google Scholar 

  4. Hurtado S, García-León M, García-Tenorio R (2006) Optimized background reduction in low-level gamma-ray spectrometry at a surface laboratory. Appl Radiat Isot 64(9):1006–1012. https://doi.org/10.1016/j.apradiso.2006.01.008

    Article  CAS  PubMed  Google Scholar 

  5. Baginova M, Vojtyla P, Povinec PP (2020) The neutron component of background of an HPGe detector operating in a surface laboratory. Appl Radiat Isot 166(109422):1–15. https://doi.org/10.1016/j.apradiso.2020.109422

    Article  CAS  Google Scholar 

  6. Heusser G (1993) Background in ionizing radiation detection illustrated by Ge-Spectrometry. In: Garcıa-Leon M, Garcia-Tenorio R (Eds.), Proceedings of the 3rd International Summer School, Low-Level Measurements of Radioactivity in the Environment, World Scientific, Singapore, Huelva, p 69

  7. Trnkova L, Rulík P (2009) Low background shielding of HPGe detector. Appl Radiat Isot 67(5):723–725. https://doi.org/10.1016/j.apradiso.2009.01.079

    Article  CAS  PubMed  Google Scholar 

  8. Núñez-Lagos R, Virto A (1996) Shielding and background reduction. Appl Radiat Isot 47(9–10):1011–1021. https://doi.org/10.1016/S0969-8043(96)00100-5

    Article  Google Scholar 

  9. Khan AJ, Li X, Haines DK, Hoffman TJ, Semkow TM (2021) Investigation of neutron shielding materials for low-background gamma spectrometry. J Radioanal Nucl Chem 328:941–950. https://doi.org/10.1007/s10967-021-07715-x

    Article  CAS  Google Scholar 

  10. Haines DK, Semkow TM, Khan AJ, Hoffman TJ, Meyer ST, Beach SE (2011) Muon and neutron-induced background in gamma-ray spectrometry. Nucl Instrum Meth Phys Res Sect A Accel Spectrom Detect Assoc Equip 652(1):326–329. https://doi.org/10.1016/j.nima.2011.01.137

    Article  CAS  Google Scholar 

  11. Mietelski JW, Hajduk Z, Hajduk L, Jurkowski J (2004) Some background effects observed with a low-level gamma-spectrometer with muon veto detector. In: Proceedings of the Aquatic Forum 2004: International conference on isotopes in environmental studies, Monte Carlo, Monaco, IAEA-CN-118/159

  12. Gorzkiewicz K, Mietelski JW (2022) Coincidence spectra evolution with delay between gamma spectrometer and its veto shield, Poster No 61 on ICRM-LLRMT, Gran Sasso, 2022 https://agenda.infn.it/event/28111/timetable/?view=standard

  13. Gorzkiewicz K, Mietelski JW, Kierepko R, Brudecki K (2019) Low-background, digital gamma-ray spectrometer with BEGe detector and active shield: commissioning, optimization and software development. J Radioanal Nucl Chem 322:1311–1321. https://doi.org/10.1007/s10967-019-06853-7

    Article  CAS  Google Scholar 

  14. Chao JH (1993) Neutron-induced gamma rays in germanium detectors. Appl Radiat Isot 44:605–611. https://doi.org/10.1016/0969-8043(93)90177-C

    Article  CAS  Google Scholar 

  15. Jovančević N, Krmar M (2011) Neutrons in the low-background Ge-detector vicinity estimated from different activation reactions. Appl Radiat Isot 69:629–635. https://doi.org/10.1016/j.apradiso.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  16. Laubenstein M, Hult M, Gasparro J, Arnold D, Neumaier S, Heusser G, Köhler M, Povinec P, Reyss JL, Schwaiger M, Theodórsson P (2004) Underground measurements of radioactivity. Appl Radiat Isot 61:167–172. https://doi.org/10.1016/j.apradiso.2004.03.0394.AalsethCE

    Article  CAS  PubMed  Google Scholar 

  17. Mietelski JW (2019) Detection of background thermal neutrons in a modifed low-background germanium gamma-ray spectrometer. J Radioanal Nucl Chem 322:1331–1339. https://doi.org/10.1007/s10967-019-06843-9

    Article  CAS  Google Scholar 

  18. Gorzkiewicz K, Mietelski JW, Ustrnul Z, Homola P, Kierepko R, Nalichowska E, Brudecki K (2021) Investigations of muon flux variations detected using veto detectors of the digital gamma-rays spectrometer. Appl Sci 11(17):7916. https://doi.org/10.3390/app11177916

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Jerome LaRosa (NIST) for revision of text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy W. Mietelski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mietelski, J.W., Gorzkiewicz, K. Time evolution of rejected, coincidence spectra, registered on germanium gamma spectrometers with muon-sensitive veto shields. J Radioanal Nucl Chem (2024). https://doi.org/10.1007/s10967-024-09412-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10967-024-09412-x

Keywords

Navigation