Skip to main content
Log in

Mosses as bioindicators of air pollution with potentially toxic elements in area with different level of anthropogenic load in Karaganda region, Kazakhstan

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

For the first time, moss biomonitoring was carried in Karaganda region, Kazakhstan. The studied area covered two territories with different level of anthropogenic load: the Karkaraly National Park and the Akzharyk settlement. The level of 36 major, minor and trace elements was determined in mosses collected at studies areas using neutron activation analysis and three elements, Cu, Cd and Pd were detected applying atomic absorption spectrometry. To reveal any associations of elements and to match them with possible emission sources factor analysis was applied. The contamination factor, pollution load index, and environmental risk were computed in order to evaluate the degree of pollution in the examined area and the effects of various elements on human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All experimental data are presented in the manuscript.

References

  1. Kłos A, Ziembik Z, Rajfur M et al (2018) Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland. Sci Total Environ 627:438–449. https://doi.org/10.1016/j.scitotenv.2018.01.211

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Ruhling A, Tyler G (1971) Regional differences in the deposition of heavy metals over Scandinavia. J Appl Ecol 8:497. https://doi.org/10.2307/2402886

    Article  Google Scholar 

  3. Cai A, Zhang H, Zhao Y et al (2022) Quantitative source apportionment of heavy metals in atmospheric deposition of a typical heavily polluted city in Northern China: comparison of PMF and UNMIX. Front Environ Sci 10:950288. https://doi.org/10.3389/fenvs.2022.950288

    Article  Google Scholar 

  4. Garg A, Yadav BK, Das DB, Wood PJ (2022) Improving the assessment of polluted sites using an integrated bio-physico-chemical monitoring framework. Chemosphere 290:133344. https://doi.org/10.1016/j.chemosphere.2021.133344

    Article  CAS  PubMed  Google Scholar 

  5. Vergel K, Zinicovscaia I, Yushin N et al (2022) Moss biomonitoring of atmospheric pollution with trace elements in the Moscow region. Russia. Toxics 10:66. https://doi.org/10.3390/toxics10020066

    Article  CAS  PubMed  Google Scholar 

  6. Mahapatra B, Dhal NK, Dash AK et al (2019) Perspective of mitigating atmospheric heavy metal pollution: using mosses as biomonitoring and indicator organism. Environ Sci Pollut Res 26:29620–29638

    Article  Google Scholar 

  7. Tien DPT, My TTT, Khiem LH et al (2022) Studying airborne trace elements in featured areas in Red river Delta and South Central Vietnam using moss biomonitoring technique and neutron activation analysis. J Radioanal Nucl Chem 331:2743–2750. https://doi.org/10.1007/s10967-022-08331-z

    Article  CAS  Google Scholar 

  8. Lazo P, Kika A, Qarri F et al (2022) Air quality assessment by moss biomonitoring and trace metals atmospheric deposition. Aerosol Air Qual Res 22:220008. https://doi.org/10.4209/aaqr.220008

    Article  CAS  Google Scholar 

  9. Chaudhuri S, Roy M (2023) Global ambient air quality monitoring: Can mosses help? A systematic meta-analysis of literature about passive moss biomonitoring. Environ. Dev. Sustain. 1

  10. Sabovljević MS, Weidinger M, Sabovljević AD et al (2020) Metal accumulation in the acrocarp moss Atrichum undulatum under controlled conditions. Environ Pollut 256:113397. https://doi.org/10.1016/j.envpol.2019.113397

    Article  CAS  PubMed  Google Scholar 

  11. Nickel S, Schröder W, Schmalfuss R et al (2018) Modelling spatial patterns of correlations between concentrations of heavy metals in mosses and atmospheric deposition in 2010 across Europe. Environ Sci Eur 30:1–17. https://doi.org/10.1186/s12302-018-0183-8

    Article  CAS  Google Scholar 

  12. Frontasyeva M, Harmens H, Uzhinskiy A, Chaligava O (2020) Mosses as biomonitors of air pollution: 2015/2016 survey on heavy metals, nitrogen and POPs in Europe and beyond.

  13. Karaganda region. In: 2023. https://en.wikipedia.org/wiki/Karaganda_Region. Accessed 19 Sep 2023

  14. (2005) Karagandinskaya oblast’. Kazahstan. Nacional’naya enciklopediya. Pergamon

  15. Forbes Kazakhstan. https://forbes.kz/process/economy/karagandinskaya_oblast_promyishlennyiy_klondayk_ili_regionalnyiy_autsayder. Accessed 19 Sep 2023

  16. Ob”ekty promyshlennosti Karagandinskoj oblasti. https://biznesinfo.kz/usefullinks/page/ob-ekty-promyshlennosti-karagandy-i-karagandinskoy-oblasti--adresa--uslugi. Accessed 19 Sep 2023

  17. Moss survey protocol | ICP Vegetation. https://icpvegetation.ceh.ac.uk/get-involved/manuals/moss-survey. Accessed 19 Sep 2023

  18. Zinicovscaia I, Hramco C, Chaligava O et al (2021) Accumulation of potentially toxic elements in mosses collected in the Republic of Moldova. Plants 10:1–13. https://doi.org/10.3390/plants10030471

    Article  CAS  Google Scholar 

  19. Zinicovscaia I, Ciocarlan A, Lupascu L et al (2019) Chemical analysis of tanacetum corymbosum (L.) Sch. Bip. Using neutron activation analysis. J Radioanal Nucl Chem 321:349–354. https://doi.org/10.1007/s10967-019-06590-x

    Article  CAS  Google Scholar 

  20. Zinicovscaia I, Gundorina S, Vergel K et al (2020) Elemental analysis of Lamiaceae medicinal and aromatic plants growing in the Republic of Moldova using neutron activation analysis. Phytochem Lett 35:119–127. https://doi.org/10.1016/j.phytol.2019.10.009

    Article  CAS  Google Scholar 

  21. Stafilov T, Barandovski L, Šajn R, Andonovska KB (2020) Atmospheric mercury deposition in macedonia from 2002 to 2015 determined using the moss biomonitoring technique. Atmosphere (Basel) 11:1–10. https://doi.org/10.3390/atmos11121379

    Article  CAS  Google Scholar 

  22. Tepanosyan G, Sahakyan L, Gevorgyan A, Frontasyeva M (2022) Factors conditioning the content of chemical elements in soil and mosses in Armenia. J Trace Elem Miner 2:100029. https://doi.org/10.1016/j.jtemin.2022.100029

    Article  Google Scholar 

  23. Aiaganov B, Aягaнoв Б (2004) Kazakhstan: natsionalnaia ėnts iklopediia

  24. Matschullat J, Ottenstein R, Reimann C (2000) Geochemical background-can we calculate it? Environ Geol 39:990–1000. https://doi.org/10.1007/s002549900084

    Article  CAS  Google Scholar 

  25. Carreras HA, Pignata ML (2002) Biomonitoring of heavy metals and air quality in Cordoba City, Argentina, using transplanted lichens. Environ Pollut 117:77–87. https://doi.org/10.1016/S0269-7491(01)00164-6

    Article  CAS  PubMed  Google Scholar 

  26. Azli T, Bouhila Z, Mansouri A et al (2021) Application of instumetal neutron activation analysis method for determination of some trace elements in lichens around three sites in Algiers. Radiochim Acta 109:719–725. https://doi.org/10.1515/ract-2021-1050

    Article  CAS  Google Scholar 

  27. Wei Y, He J, Xue Y et al (2022) Spatial distribution of multi-elements in moss revealing heavy metal precipitation in London Island, Svalbard. Arctic Environ Pollut 315:120398. https://doi.org/10.1016/j.envpol.2022.120398

    Article  CAS  PubMed  Google Scholar 

  28. Rogula-Kozłowska W, Penkała M, Bihałowicz JS et al (2023) Elemental composition of the ultrafine fraction of road dust in the Vicinity of motorways and expressways in Poland–asphalt versus concrete surfaces. J Ecol Eng 24:82–90. https://doi.org/10.12911/22998993/171377

    Article  Google Scholar 

  29. Wang CF, Chang CY, Tsai SF, Chiang HL (2005) Characteristics of road dust from different sampling sites in northern taiwan. J Air Waste Manag Assoc 55:1236–1244. https://doi.org/10.1080/10473289.2005.10464717

    Article  CAS  PubMed  Google Scholar 

  30. He L, Wang S, Liu M et al (2023) Transport and transformation of atmospheric metals in ecosystems: A review. J Hazard Mater Adv 9:100218. https://doi.org/10.1016/j.hazadv.2022.100218

    Article  CAS  Google Scholar 

  31. Vinogradova AA, Kotova EI, Topchaya VY (2017) Atmospheric transport of heavy metals to regions of the North of the European territory of Russia. Geogr Nat Resour 38:78–85. https://doi.org/10.1134/S1875372817010103

    Article  Google Scholar 

  32. Chaligava O, Nikolaev I, Khetagurov K et al (2021) First results on moss biomonitoring of trace elements in the central part of Georgia, Caucasus. Atmosphere (Basel) 12:317. https://doi.org/10.3390/atmos12030317

    Article  ADS  CAS  Google Scholar 

  33. Zhang GL, Pan JH, Huang CM, Gong ZT (2007) Geochemical features of a soil chronosequence developed on basalt in Hainan Island, China. Rev Mex Ciencias Geol 24:261–269

    Google Scholar 

  34. He X, Ma J, Wei G et al (2022) Mass-dependent fractionation of titanium stable isotopes during intensive weathering of basalts. Earth Planet Sci Lett 579:117347. https://doi.org/10.1016/j.epsl.2021.117347

    Article  CAS  Google Scholar 

  35. Zinicovscaia I, Chaligava O, Yushin N et al (2022) Moss biomonitoring of atmospheric trace element pollution in the republic of Moldova. Arch Environ Contam Toxicol 82:355–366. https://doi.org/10.1007/s00244-022-00918-7

    Article  CAS  PubMed  Google Scholar 

  36. Straffelini G, Ciudin R, Ciotti A, Gialanella S (2015) Present knowledge and perspectives on the role of copper in brake materials and related environmental issues: a critical assessment. Environ Pollut 207:211–219

    Article  CAS  PubMed  Google Scholar 

  37. Hien TT, Chi NDT, Huy DH et al (2022) Soluble trace metals associated with atmospheric fine particulate matter in the two most populous cities in Vietnam. Atmos Environ X 15:100178. https://doi.org/10.1016/j.aeaoa.2022.100178

    Article  CAS  Google Scholar 

  38. Schlesinger WH, Klein EM, Vengosh A (2017) Global biogeochemical cycle of vanadium. Proc Natl Acad Sci U S A 114:E11092–E11100. https://doi.org/10.1073/pnas.1715500114

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. EXS 101:133–164

    PubMed  PubMed Central  Google Scholar 

  40. Kosiorek M, Wyszkowski M (2019) Effect of cobalt on the environment and living organisms - a review. Appl Ecol Environ Res 17:11419–11449. https://doi.org/10.15666/aeer/1705_1141911449

    Article  Google Scholar 

  41. Alves CA, Vicente AMP, Calvo AI et al (2020) Physical and chemical properties of non-exhaust particles generated from wear between pavements and tyres. Atmos Environ 224:117252. https://doi.org/10.1016/j.atmosenv.2019.117252

    Article  CAS  Google Scholar 

  42. Barsova N, Yakimenko O, Tolpeshta I, Motuzova G (2019) Current state and dynamics of heavy metal soil pollution in Russian federation—a review. Environ Pollut 249:200–207

    Article  CAS  PubMed  Google Scholar 

  43. Wu R, Yao F, Li X et al (2022) Manganese pollution and its remediation: a review of biological removal and promising combination strategies. Microorganisms 10:2411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carballeira A, Couto JA, Fernández JA (2002) Estimation of background levels of various elements in terrestrial mosses from Galicia (NW Spain). Water Air Soil Pollut 133:235–252. https://doi.org/10.1023/A:1012928518633

    Article  ADS  CAS  Google Scholar 

  45. Haynes RJ, Zhou YF (2022) Retention of heavy metals by dredged sediments and their management following land application. Adv Agron 171:191–254

    Article  Google Scholar 

  46. Hakanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14:975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inga Zinicovscaia.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurkassimova, M., Omarova, N., Zinicovscaia, I. et al. Mosses as bioindicators of air pollution with potentially toxic elements in area with different level of anthropogenic load in Karaganda region, Kazakhstan. J Radioanal Nucl Chem 333, 961–970 (2024). https://doi.org/10.1007/s10967-023-09334-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09334-0

Keywords

Navigation