Skip to main content
Log in

Investigation of neutrons' contribution to the practical yield of 99mTc from thick Mo-sample irradiation in 11-MeV cyclotron

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This paper considers secondary neutrons contribution to the yield of 99mTc obtained from the thick Mo-sample via (p,2n) nuclear reaction channel. The physical yield was determined experimentally using 11-MeV cyclotron Eclipse RD with application of the new target assembly developed for solid sample irradiations and appeared to be 30.9 ± 1.3 MBq/μAh. The neutron flux over the sample was analyzed by MCNP simulations taking into account the construction elements of the target module and cyclotron self-shielding. The contribution to the 99mTc yield by indirect production via 98Mo(n,γ)99Mo → 99mTc reactions was estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors declare that all the data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. Bondar BM, Kostianyj MV, Mikhnytsky IB, Kmetyuk YaV (2012) F-18 production for PET imaging. In: Proceedings of 2-d International Workshop «Medical physics—the current status, problems, the ways of development, innovation technologies», pp 70–73. The advanced concept of medical physics specialization (univ.kiev.ua)

  2. Cyclotron Based Production of Technetium-99m. IAEA Radioisotopes and Radiopharmaceuticals Reports No 2 (2017). P1743_web.pdf (iaea.org)

  3. Takács S, Szûcs Z, Tárkányi F, Hermanne A, Sonck M (2003) Evaluation of proton-induced reactions on 100Mo: new cross sections for the production of 99mTc and 99Mo. J Radioanal Nucl Chem 257:195–201. https://doi.org/10.1023/A:1024790520036

    Article  Google Scholar 

  4. Bondar BM, Mikhnytsky IB, Kmetyuk Ya V (2017) The study of 99mTc production using medical cyclotrons in Ukraine. Res Bull Natl Tech Univ Ukraine «Kyiv Polytechnic Institute» Ser Eng 6:53–58. https://doi.org/10.20535/1810-0546.2017.6.103692

    Article  Google Scholar 

  5. Qaim SM, Sudár S, Scholten B, Koning AJ, Coenen HH (2014) Evaluation of excitation functions of 100Mo(p, d+pn)99Mo and 100Mo (p,2n)99mTc reactions: estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99mTc. Appl Radiat Isot 85:101–113. https://doi.org/10.1016/j.apradiso.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  6. Celler A, Hou X, Bénard F, Ruth T (2011) Theoretical modeling of yields for proton-induced reactions on natural and enriched molybdenum targets. Phys Med Biol 56:5469–5484. https://doi.org/10.1088/0031-9155/56/17/002

    Article  CAS  PubMed  Google Scholar 

  7. Rovais MRA, Aardaneh K, Aslani G, Rahiminejad A, Yousefi K, Boulouri F (2016) Assessment of the direct cyclotron production of 99mTc: an approach to crisis management of 99mTc shortage. Appl Radiat Isot 112:55–61. https://doi.org/10.1016/j.apradiso.2016.03.017

    Article  CAS  PubMed  Google Scholar 

  8. Richards VN, Mebrahtu E, Lapi SE (2013) Cyclotron production of 99mTc using 100Mo2C targets. Nucl Med Biol 40(7):939–945. https://doi.org/10.1016/j.nucmedbio.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  9. Červenák J, Lebeda O (2016) Experimental cross-sections for proton-induced nuclear reactions on natMo. Nucl Instrum Methods Phys Res B 380:32–49. https://doi.org/10.1016/j.nimb.2016.05.006

    Article  CAS  Google Scholar 

  10. Tárkányi F, Ignatyuk AV, Hermanne A, Capote R, Carlson BV, Engle JW, Kellett MA, Kibedi T, Kim GN, Kondev FG, Hussain M, Lebeda O, Luca A, Nagai Y, Naik H, Nichols AL, Nortier FM, Suryanarayana SV, Takács S, Verpelli M (2019) Recommended nuclear data for medical radioisotope production: diagnostic gamma emitters. J Radioanal Nucl Chem 319:487–531. https://doi.org/10.1007/s10967-018-6142-4

    Article  CAS  Google Scholar 

  11. Lagunas-Solar MC, Kiefer PM, Carvacho OF, Lagunas CA, Po CY (1991) Cyclotron production of NCA 99mTc and 99Mo. An alternative non-reactor supply source of instant 99mTc and 99Mo+99mTc generators. Appl Radiat Isot 42(7):643–651. https://doi.org/10.1016/0883-2889(91)90035-Y

    Article  CAS  Google Scholar 

  12. Koning AJ, Rochman D, Sublet J-C, Dzysiuk N, Fleming M, van der Marck S (2019) TENDL: complete nuclear data library for innovative nuclear science and technology. Nucl Data Sheets 155:1–55. https://doi.org/10.1016/j.nds.2019.01.002

    Article  CAS  Google Scholar 

  13. Brown DA, Chadwick MB, Capote R et al (2018) ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl Data Sheets 148:1–142. https://doi.org/10.1016/j.nds.2018.02.001

    Article  CAS  Google Scholar 

  14. Bondar BM, Kravchenko AV, Mikhnytsky IB, Kmetyuk Ya V (2020) New target assembly for solid samples irradiation in 11-MeV medical cyclotron. Probl At Sc Technol 4(128):93–97

    Google Scholar 

  15. Ziegler JF, Biersack JP, Littmark U (2006) The code of SRIM—the stopping and range of ions in matter. http://www.srim.org/SRIM/SRIM2011.htm

  16. Bondar BM, Yu LB, Kadenko IM, Kmetyuk Ya V (2022) Determination of the experimental yield of 99mTc in (p,2n) nuclear reaction on enriched 100Mo sample with application of 11-MeV medical cyclotron. Appl Radiat Isot 189:110431. https://doi.org/10.1016/j.apradiso.2022.110431

    Article  CAS  PubMed  Google Scholar 

  17. MCNPX User's Manual, Version 2.6.0. Los Alamos National Laboratory report LA-CP-07-1473 (2008). https://mcnp.lanl.gov/pdf_files/TechReport_2008_LANL_LA-UR-08-02216_HendricksMcKinneyEtAl.pdf

  18. Detwiler RS, McConn RJ, Grimes TF, Upton SA, Engel EJ (2021) Compendium of material composition data for radiation transport modeling. Report of Pacific Northwest National Laboratory (PNNL) 200-DMAMC-128170 Rev.2. https://www.osti.gov/servlets/purl/1782721

  19. Holbrow CH, Barschall HH (1963) Neutron evaporation spectra. Nucl Phys 42:264–279. https://doi.org/10.1016/0029-5582(63)90734-X

    Article  CAS  Google Scholar 

  20. Bramblett RL, Bonner TW (1960) Neutron evaporation spectra from (p,n) reactions. Nucl Phys 40:395–407. https://doi.org/10.1016/0029-5582(60)90182-6

    Article  Google Scholar 

  21. Van Do N, Khue PD, Thanh KT, Van Loat B, Rahman MdS, Kim KS, Kim G, Youngdo Oh, Lee H-S, Cho M-H, Ko IS, Namkung W (2009) Thermal neutron cross-section and resonance integral of the 98Mo(n, γ)99Mo reaction. Nucl Instrum Methods Phys Res B 267(3):462–468. https://doi.org/10.1016/j.nimb.2008.12.003

    Article  CAS  Google Scholar 

  22. Takács S, Hermanne A, Ditrói F, Tárkányi F, Aikawa M (2015) Reexamination of cross sections of the 100Mo(p,2n)99mTc reaction. Nucl Instrum Methods Phys Res B 347:26–38. https://doi.org/10.1016/j.nimb.2015.01.056

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borys Bondar.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondar, B., Kadenko, I., Leshchenko, B. et al. Investigation of neutrons' contribution to the practical yield of 99mTc from thick Mo-sample irradiation in 11-MeV cyclotron. J Radioanal Nucl Chem (2023). https://doi.org/10.1007/s10967-023-09212-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10967-023-09212-9

Keywords

Navigation