Skip to main content
Log in

A long-term investigation of environmental radioactivity and public health around a nuclear power plant

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The aim of this work is to reveal impacts of a nuclear power plant on environmental radioactivity and public health since commission in the South China Sea. After long-term monitoring, it turns out that radioactivity in ambient air environment, water, soil, sweet potato, rice, chicken, lamb, butterfish and prawn meet demands of national environment protection standards and food safety standards in China. After 6 years’ statistic check of local residents, the top tree diseases before and after the plant’s commission remained pulmonary tuberculosis, hand-foot-and-mouth disease, and hepatitis B. Incidence of malignant tumor did not rise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Peterson HT Jr (1987) Summary report on the post-accident review meeting on the Chernobyl accident: International Nuclear Safety Advisory Group. International Atomic Energy Agency (IAEA) Safety Series No. 75-INSAG-1 (STI/PUB/740), Vienna, IAEA, 1986. 260 Austrian schillings. J Environ Radioact 5(5):403–404. https://doi.org/10.1016/0265-931X(87)90015-4

    Article  Google Scholar 

  2. Visschers VHM, Siegrist M (2013) How a nuclear power plant accident influences acceptance of nuclear power: results of a longitudinal study before and after the Fukushima disaster. Risk Anal 33(2):333–347. https://doi.org/10.1111/j.1539-6924.2012.01861.x

    Article  PubMed  Google Scholar 

  3. Steinhauser G, Brandl A, Johnson TE (2014) Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci Total Environ 470–471(2):800–817. https://doi.org/10.1016/j.scitotenv.2013.10.029

    Article  CAS  PubMed  Google Scholar 

  4. Dubrova YE, Nesterov VN, Krouchinsky NG, Ostapenko VA, Neumann R, Neil DL, Alec JJ (1996) Human minisatellite mutation rate after the Chernobyl accident. Nature 380(6576):683–686. https://doi.org/10.1038/380683a0

    Article  CAS  PubMed  Google Scholar 

  5. Arvela H, Markkanen M, Lemmelä H (1990) Mobile survey of environmental gamma radiation and fall-out levels in Finland after the Chernobyl accident. Radiat Prot Dosim 32(3):177–184. https://doi.org/10.1093/oxfordjournals.rpd.a080734

    Article  CAS  Google Scholar 

  6. Dushenkov S, Mikheev A, Prokhnevsky A, Ruchko M, Sorochinsky B (1999) Phytoremediation of radiocesium-contaminated soil in the vicinity of Chernobyl, Ukraine. Environ Sci Technol 33(3):469–475. https://doi.org/10.1021/es980788+

    Article  CAS  Google Scholar 

  7. Buesseler K, Aoyama M, Fukasawa M (2011) Impacts of the Fukushima nuclear power plants on marine radioactivity. Environ Sci Technol 45(23):9931–9935. https://doi.org/10.1021/es202816c

    Article  CAS  PubMed  Google Scholar 

  8. Endo S, Kimura S, Takatsuji T, Nanasawa K, Imanaka T, Shizuma K (2012) Measurement of soil contamination by radionuclides due to the Fukushima Dai-ichi nuclear power plant accident and associated estimated cumulative external dose estimation. J Environ Radioact 111:18–27. https://doi.org/10.1016/j.jenvrad.2011.11.006

    Article  CAS  PubMed  Google Scholar 

  9. Zheng J, Tagami K, Bu W, Uchida S, Ihara S (2014) Cs-135/Cs-137 isotopic ratio as a new tracer of radiocesium released from the Fukushima nuclear accident. Environ Sci Technol 48(10):5433–5438. https://doi.org/10.1021/es500403h

    Article  CAS  PubMed  Google Scholar 

  10. Kong TY, Akabani G, Poston JW Sr (2018) A study of a dose constraint for members of the public living around nuclear power plants in the United States. Nucl Technol 205(6):781–789. https://doi.org/10.1080/00295450.2018.1546536

    Article  Google Scholar 

  11. Harris JT, Miller DW (2008) Radiological effluents released by U.S. commercial nuclear power plants from 1995–2005. Health Phys 95(6):734–743. https://doi.org/10.1097/01.HP.0000324201.89669.30

    Article  CAS  PubMed  Google Scholar 

  12. Osborne RV (2001) Further consideration of the incidence of childhood leukemia around nuclear power plants in Great Britain. Radiat Res 176(4):535–537. https://doi.org/10.1667/RRXX34.1

    Article  CAS  Google Scholar 

  13. Hamlat S, Thompson P, Rinker M, St-Amant N, Pan P, Peters K (2018) Independent environmental monitoring and public dose assessment around the Canadian nuclear power plants. J Radioanal Nucl Chem 317(1):325–335. https://doi.org/10.1007/s10967-018-5903-4

    Article  CAS  Google Scholar 

  14. Gürsel K, Taskin H, Bīngöldag N, Kapdan E, Yilmaz YZ (2018) Environmental impact assessment of natural radioactivity and heavy metals in drinking water around Akkuyu nuclear power plant in Mersin province. Turk J Chem 42(3):735–747. https://doi.org/10.3906/kim-1710-83

    Article  CAS  Google Scholar 

  15. Kontuľ I, Povinec PP, Šivo A, Richtáriková M (2018) Radiocarbon in the atmosphere around the Bohunice nuclear power plant in Slovakia. J Radioanal Nucl Chem 318(3):2335–2339. https://doi.org/10.1007/s10967-018-6241-2

    Article  CAS  Google Scholar 

  16. Qvist SA, Brook BW (2015) Environmental and health impacts of a policy to phase out nuclear power in Sweden. Energy Policy 84:1–10. https://doi.org/10.1016/j.enpol.2015.04.023

    Article  Google Scholar 

  17. Zeb J, Wasim M, Rashid A, Arshed W (2015) Radiological mapping of the area around two research reactors in Islamabad. J Radioanal Nucl Chem 306(2):451–455. https://doi.org/10.1007/s10967-015-4200-8

    Article  CAS  Google Scholar 

  18. Mar BS (2015) Determination of 137Cs and 60Co pollution in the area of the Laguna Verde nuclear power plant, Mexico. Radiat Prot Dosim 167(1–3):228–230. https://doi.org/10.1093/rpd/ncv250

    Article  CAS  Google Scholar 

  19. Hesslerová P, Pokorný J (2015) Functional attributes of the landscape surrounding the Temelin nuclear power plant (Czech Republic). Int J Remote Sens 36(19–20):5165–5177. https://doi.org/10.1080/01431161.2015.1047995

    Article  Google Scholar 

  20. Yang YH, Lee GB, Shon SH, Kim JY (2015) Assessment of long-term trend for environmental radioactivity around Wolsong nuclear power plant in Korea. Ann Nucl Energy 77:231–237. https://doi.org/10.1016/j.anucene.2014.09.061

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to local hospitals and Center for Disease Control and Prevention for their help during investigations of public health.

Funding

Funding was provided by Hainan Provincial Natural Science Foundation of China (Grant No. 419MS106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenzhou Liu or Jiayuan Wang.

Additional information

Publisher's Note

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wang, L., Wang, J. et al. A long-term investigation of environmental radioactivity and public health around a nuclear power plant. J Radioanal Nucl Chem 323, 825–829 (2020). https://doi.org/10.1007/s10967-019-06983-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06983-y

Keywords

Navigation