Skip to main content
Log in

Effective biosorption of U(VI) from aqueous solution using calcium alginate hydrogel beads grafted with amino-carbamate moieties

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Novel amino-carbamate moiety grafted calcium alginate hydrogel beads (CA-1) were synthesized by reacting sodium alginate with 4-phenylsemicarbazide followed by ionotropic crosslinking with Ca(II) ions. As compared to pure calcium alginate hydrogel beads (CA), CA-1 exhibited fast kinetics and enhanced sorption capacity towards U(VI) ions, from mild acidic conditions. The sorption kinetic could be described by pseudo-second order equation, with the chemisorption as the rate-controlling step. The sorption isotherm were fitted well by Langmuir (qm = 233.2 mg/g at 298 K). CA-1 hydrogel beads exhibited fast kinetic, high sorption capacity and excellent selectivity for U(VI) sorption, thus it could be potentially used for the removal/recovery of U(VI) ions from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Havelka S, Berak L, Kourim V, Peka I, Podest M (1973) Research on fuel cycles of nuclear power stations carried out in the chemistry department of the institute of nuclear research. Stat Neerl 11:63–76

    Google Scholar 

  2. Aly MM, Hamza MF (2013) A review: studies on uranium removal using different techniques. Overview. J Disper Sci Technol 34:182–213

    Article  CAS  Google Scholar 

  3. Elwakeel KZ, Atia AA (2014) Uptake of U(VI) from aqueous media by magnetic Schiff’s base chitosan composite. J Clean Prod 70:292–302

    Article  CAS  Google Scholar 

  4. Galhoum AA, Mahfouz MG, Atia AA (2015) Amino acid functionalized chitosan magnetic nanobased particles for uranyl sorption. Ind Eng Chem Res 54:12374–12385

    Article  CAS  Google Scholar 

  5. Kim JS, Lee JY, Yoon HS, Kumar JR (2011) A brief review on solvent extraction of uranium from acidic solutions. Sep Purif Method 40:77–125

    Article  CAS  Google Scholar 

  6. Gok C, Aytas S (2009) Biosorption of uranium(VI) from aqueous solution using calcium alginate beads. J Hazard Mater 168:369–375

    Article  CAS  PubMed  Google Scholar 

  7. Read AGH, Miura N, Carter JL et al (2018) Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads. Int J Biol Macromol 117:78–85

    Article  CAS  Google Scholar 

  8. Chen JP, Kuo CY, Lee WL (2012) Thermo-responsive wound dressings by grafting chitosan and poly(n-isopropylacrylamide) to plasma-induced graft polymerization modified non-woven fabrics. Appl Surf Sci 262:95–101

    Article  CAS  Google Scholar 

  9. Iftekhar S, Srivastava V, Hammouda SB, Sillanpää M (2018) Fabrication of novel metal ion imprinted xanthan gum-layered double hydroxide nanocomposite for adsorption of rare earth elements. Carbohydr Polym 194:274–284

    Article  CAS  PubMed  Google Scholar 

  10. Cui J, Zhou Z, Liu S et al (2018) Synthesis of cauliflower-like ion imprinted polymers for selective adsorption and separation of lithium ion. New J Chem 42:14502–14509

    Article  CAS  Google Scholar 

  11. Sone H, Fugetsu B, Tanaka S (2009) Selective elimination of lead(II) ions by alginate/polyurethane composite foams. J Hazard Mater 162:423–429

    Article  CAS  PubMed  Google Scholar 

  12. Wu J, Tian K, Wang J et al (2018) Uranium and europium sorption on amidoxime-functionalized magnetic chitosan micro-particles. Chem Eng J 106:124–137

    Google Scholar 

  13. Shehzad H, Zhou L, Li Z, Chen Q, Wang Y, Liu Z (2018) Effective adsorption of U(VI) from aqueous solution using magnetic chitosan nanoparticles grafted with maleic anhydride: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem 315:195–206

    Article  CAS  Google Scholar 

  14. Yu S, Dai Y, Cao X (2016) Adsorption of uranium(VI) from aqueous solution using a novel magnetic hydrothermal cross-linking chitosan. J Radioanal Nucl Chem 310:651–660

    Article  CAS  Google Scholar 

  15. Sheng L, Zhou L, Huang Z (2016) Facile synthesis of magnetic chitosan nano-particles functionalized with N/O-containing groups for efficient adsorption of U(VI) from aqueous solution. J Radioanal Nucl Chem 310:1361–1371

    Article  CAS  Google Scholar 

  16. Wang G, Liu J, Wang X (2009) Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168:1053–1058

    Article  CAS  PubMed  Google Scholar 

  17. Yu J, Wang J, Jiang Y (2017) Removal of uranium from aqueous solution by alginate beads. Nucl Eng Technol 49:534–540

    Article  CAS  Google Scholar 

  18. Fan J, Shi Z, Lian M, Li H, Yin J (2013) Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J Mater Chem 1:7433–7439

    Article  CAS  Google Scholar 

  19. Ahmad A, Bhat AH, Buang A (2018) Biosorption of transition metals by freely suspended and Ca-alginate immobilised with Chlorella vulgaris: kinetic and equilibrium modeling. J Clean Prod 171:1361–1375

    Article  CAS  Google Scholar 

  20. Papageorgiou SK, Katsaros FK, Kouvelos EP, Nolan JW, Deit HL, Kanellopoulos NK (2006) Heavy metal sorption by calcium alginate beads from laminaria digitata. J Hazard Mater 137:1765–1772

    Article  CAS  PubMed  Google Scholar 

  21. Shengye W, Thierry V, Catherine F, Eric G (2016) Alginate and algal-based beads for the sorption of metal cations: Cu(II) and Pb(II). Int J Mol Sci 17:1453–1460

    Article  CAS  Google Scholar 

  22. Vijayalakshmi K, Gomathi T (2014) Preparation and characterization of nanochitosan/sodium alginate/microcrystalline cellulose beads. Pharm Chem 6:65–77

    CAS  Google Scholar 

  23. Gotoh T, Matsushima K, Kikuchi KI (2004) Preparation of alginate-chitosan hybrid gel beads and adsorption of divalent metal ions. Chemosphere 55:135–140

    Article  CAS  PubMed  Google Scholar 

  24. Benettayeb A, Guibal E, Morsli A, Kessas R (2017) Chemical modification of alginate for enhanced sorption of Cd(II), Cu(II) and Pb(II). Chem Eng J 316:704–714

    Article  CAS  Google Scholar 

  25. Leal D, Matsuhiro B, Rossi M, Caruso F (2008) FT-IR spectra of alginic acid block fractions in three species of brown seaweeds. Carbohydr Res 343:308–316

    Article  CAS  PubMed  Google Scholar 

  26. Şimşek S, Yilmaz E, Boztu A (2013) Amine-modified maleic anhydride containing terpolymers for the adsorption of uranyl ion in aqueous solutions. J Radioanal Nucl Chem 298:923–930

    Article  CAS  Google Scholar 

  27. Ouyang J, Wang Y, Li T, Zhou L, Liu Z (2018) Immobilization of carboxyl-modified multiwalled carbon nanotubes in chitosan-based composite membranes for U(VI) sorption. J Radioanal Nucl Chem 317:1419–1428

    Article  CAS  Google Scholar 

  28. Zhou L, Zou H, Wang Y, Liu Z, Adesina AA (2016) Immobilization of in situ generated Fe0-nanoparticles in tripolyphosphate-crosslinking chitosan membranes for enhancing U(VI) sorption. J Radioanal Nucl Chem 311:1–9

    Google Scholar 

  29. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Handlingar 24:1–39

    Google Scholar 

  30. Ho YS, McKay G (2002) Application of kinetic models to the sorption of copper(II) on to peat. Adsorpt Sci Technol 20:797–815

    Article  CAS  Google Scholar 

  31. Donia AM, Atia AA, Elwakeel KZ (2007) Recovery of gold (III) and silver (I) on a chemically modified chitosan with magnetic properties. Hydrometallurgy 87:197–206

    Article  CAS  Google Scholar 

  32. Yang S, Qian J, Kuang L, Hua D (2017) Ion-imprinted mesoporous silica for selective removal of uranium from highly acidic and radioactive effluent. ACS Appl Mater Int 9:29337–29344

    Article  CAS  Google Scholar 

  33. Basu H, Singhal RK, Pimple MV, Saha S (2018) Graphene oxide encapsulated in alginate beads for enhanced sorption of uranium from different aquatic environments. J Environ Chem Eng 6:1625–1633

    Article  CAS  Google Scholar 

  34. Shao D, Jiang Z, Wang X, Li J, Meng Y (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO2 2+ from aqueous solution. J Phys Chem B 113:860–864

    Article  CAS  PubMed  Google Scholar 

  35. Kim JH, Lee HI, Yeon JW, Jung Y, Kim JM (2010) Removal of uranium(VI) from aqueous solutions by nanoporous carbon and its chelating polymer composite. J Radioanal Nucl Chem 286:129–133

    Article  CAS  Google Scholar 

  36. Shao D, Wang X, Zhao G, Wen T, Yang X, Yang S, Liao J, Hu J (2012) Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans 41:6182–6188

    Article  CAS  PubMed  Google Scholar 

  37. Zhao Y, Li J, Zhang S, Chen H, Shao D (2013) Efficient enrichment of uranium(VI) on amidoximated magnetite/graphene oxide composites. RSC Adv 3:18952–18959

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is financially supported by the National Natural Science Foundation (21667001; 21866002; 21866005; 21706028; 21866006), the Key Research and Development Program and the Natural Science Fund Program of Jiangxi Province (20161BBF60059; S2017ZRMSB0473).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehzad, H., Zhou, L., Wang, Y. et al. Effective biosorption of U(VI) from aqueous solution using calcium alginate hydrogel beads grafted with amino-carbamate moieties. J Radioanal Nucl Chem 321, 605–615 (2019). https://doi.org/10.1007/s10967-019-06631-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06631-5

Keywords

Navigation