Skip to main content
Log in

Experimental study of a large plastic scintillator response with different reflective coverings based on digital pulse processing method

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Digital pulse processing methods have various applications in radiation spectroscopy due to their unique properties. Here, the effect of light reflector on the response of a large plastic scintillator with different reflective coverings (Teflon tape, aluminum foil and black tape) coupled to a fast photomultiplier tube is investigated based on some extracted anode pulse features. Results showed that the pulse features were changed according to the reflection coefficient of the covering. For instance, the fall time of the average anode pulse shape for Teflon tape, aluminum foil and black tape coverings are 10.46, 6.88 and 3.65 ns, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bae JW, Lee U, Kim HR (2017) Development of continuous inflow tritium measurement in water technology using electrolysis and a plastic scintillator. J Radioanal Nucl Chem 314(2):689–694

    Article  CAS  Google Scholar 

  2. Metzger RL, Van Riper KA, Eckerman KF, Leggett RW (2018) Detection of long-lived contaminants in cyclotron-produced radiopharmaceuticals by large area plastic scintillators. J Radioanal Nucl Chem 318(1):11–15

    Article  CAS  Google Scholar 

  3. Czyz SA, Farsoni AT (2017) A radioxenon detection system using CdZnTe, an array of SiPMs, and a plastic scintillator. J Radioanal Nucl Chem 313(1):131–140

    Article  CAS  Google Scholar 

  4. Antonuccio V, Bandieramonte M, Becciani U, Bonanno D, Bonanno G, Bongiovanni D, Fallica P, Garozzo S, Grillo A, La Rocca P (2017) The muon portal project: design and construction of a scanning portal based on muon tomography. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 845:322–325

    Article  CAS  Google Scholar 

  5. Ghorbani P, Sardari D, Azimirad R, Hosntalab M (2017) Assessment of optical photon collection in a large plastic scintillator using Geant4-Gate code. Opt-Int J Light Electron Opt 158:305–311

    Article  CAS  Google Scholar 

  6. Mulmule D, Behera S, Netrakanti P, Mishra D, Kashyap V, Jha V, Pant L, Nayak B, Saxena A (2018) A plastic scintillator array for reactor based anti-neutrino studies. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 911:104–114

    Article  CAS  Google Scholar 

  7. Sanada Y, Kondo A, Sugita T, Nishizawa Y, Yuuki Y, Ikeda K, Shoji Y, Torii T (2014) Radiation monitoring using an unmanned helicopter in the evacuation zone around the Fukushima Daiichi nuclear power plant. Explor Geophys 45(1):3–7

    Article  CAS  Google Scholar 

  8. Dormenev V, Brinkmann K-T, Korjik M, Novotny R (2017) Study of properties of the plastic scintillator EJ-260 under irradiation with 150 MeV protons and 1.2 MeV gamma-rays. In: Journal of physics: conference series, 918. vol 1. IOP Publishing, p 012035

  9. Aguiar P, Casarejos E, Vilan J, Iglesias (2013) A Geant4-GATE simulation of a large plastic scintillator for muon radiography. In: 3rd international conference on advancements in nuclear instrumentation measurement methods and their applications (ANIMMA), IEEE, pp 1–5

  10. Knoll GF (2010) Radiation detection and measurement. Wiley, Hoboken

    Google Scholar 

  11. Tsoulfanidis N (2010) Measurement and detection of radiation. CRC Press, Boca Raton

    Book  Google Scholar 

  12. Bayat E, Doust-Mohammadi V, Ghorbani P, Ghal-Eh N, Mohammadi R (2014) Scintillation of XP2020 PMT glass window. Radiat Phys Chem 102:1–4

    Article  CAS  Google Scholar 

  13. Clark GW (1960) Applications of large scintillation detectors to cosmic ray experiments. IRE Trans Nucl Sci 7(2–3):164–169

    Article  Google Scholar 

  14. Safari M, Davani FA, Afarideh H, Jamili S, Bayat E (2016) Discrete fourier transform method for discrimination of digital scintillation pulses in mixed neutron-gamma fields. IEEE Trans Nucl Sci 63(1):325–332

    Article  CAS  Google Scholar 

  15. Dietze G (1979) Energy calibration of NE-213 scintillation counters by δ-rays. IEEE Trans Nucl Sci 26(1):398–402

    Article  Google Scholar 

  16. Ghal-Eh N, Koohi-Fayegh R (2006) Light collection behaviour of scintillators with different surface coverings. Radiat Meas 41(3):289–294

    Article  CAS  Google Scholar 

  17. Scheu S, Kaspar H, Robmann P, Van Der Schaaf A, Truöl P (2006) Studies on wrapping materials and light collection geometries in plastic scintillators. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 567(1):345–349

    Article  CAS  Google Scholar 

  18. Taheri A, Peyvandi RG (2017) The impact of wrapping method and reflector type on the performance of rod plastic scintillators. Measurement 97:100–110

    Article  Google Scholar 

  19. Kilvington A, Baker C, Illinesi P (1970) Reflective coverings for scintillation counters. Nucl Instrum Methods 80(1):177–178

    Article  Google Scholar 

  20. Warburton W, Momayezi M, Grudberg P, Skulski W (2001) Digital pulse processing: new possibilities in portable electronics. J Radioanal Nucl Chem 248(2):301–307

    Article  CAS  Google Scholar 

  21. Blondel A, Breton D, Dubreuil A, Khotyantsev A, Korzenev A, Maalmi J, Mefodev A, Mermod P, Noah E (2018) Study of timing characteristics of a 3 m long plastic scintillator counter using waveform digitizers. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 877:9–15

    Article  CAS  Google Scholar 

  22. Jastaniah S, Sellin P (2002) Digital pulse-shape algorithms for scintillation-based neutron detectors. IEEE Trans Nucl Sci 49(4):1824–1828

    Article  CAS  Google Scholar 

  23. Guyon I, Gunn S, Nikravesh M, Zadeh LA (2008) Feature extraction: foundations and applications, vol 207. Springer, Berlin

    Google Scholar 

  24. Ghal-Eh N, Scott M, Koohi-Fayegh R, Rahimi MF (2004) A photon transport model code for use in scintillation detectors. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 516(1):116–121

    Article  CAS  Google Scholar 

  25. Janecek M (2012) Reflectivity spectra for commonly used reflectors. IEEE Trans Nucl Sci 59(3):490–497

    Article  CAS  Google Scholar 

  26. Auffray E, Frisch B, Geraci F, Ghezzi A, Gundacker S, Hillemanns H, Jarron P, Meyer T, Paganoni M, Pauwels K (2013) A comprehensive & systematic study of coincidence time resolution and light yield using scintillators of different size and wrapping. IEEE Trans Nucl Sci 60(5):3163–3171

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Sardari.

Ethics declarations

Conflict of interest

The authors declare no financial or any other conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, P., Sardari, D., Azimirad, R. et al. Experimental study of a large plastic scintillator response with different reflective coverings based on digital pulse processing method. J Radioanal Nucl Chem 321, 481–488 (2019). https://doi.org/10.1007/s10967-019-06596-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06596-5

Keywords

Navigation