Skip to main content
Log in

Variation rules of the radon emanation coefficient in dump-leached uranium tailing sand

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study was intended to determine the variation rules of the radon emanation coefficient in dump-leached uranium tailing sand. A temperature and humidity controllable device for measuring the emanation coefficient was designed. Tailing sand with different grain sizes was selected from uranium tailings in southern China. An orthogonal experimental design was conducted to determine the radon emanation coefficient of the sand under different temperatures, humidities and grain sizes. Experimental results showed that the air temperature, humidity and grain size have significant effects on the emanation coefficient. The variation rules regarding the radon emanation coefficient showed significant reference value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tomášek L (1993) Radon exposure and cancers other than lung cancer among uranium miners in West Bohemia. Lancet 341(8805):919–923

    Article  PubMed  Google Scholar 

  2. Tomášek L, Darby SC, Fearn T (1994) Patterns of lung cancer mortality among uranium miners in West Bohemia with varying rates of exposure to radon and its progeny. Radiat Res 137(2):251–261

    Article  PubMed  Google Scholar 

  3. Lubin JH, Boice J Jr, Edling C, Hornung RW, Howe GR, Kunz E et al (1995) Lung cancer in radon-exposed miners and estimation of risk from indoor exposure. J Natl Cancer Inst 11(11):817

    Article  Google Scholar 

  4. Darby S, Hill D, Auvinen A, Barrosdios JM, Baysson H, Bochicchio F et al (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 european case-control studies. BMJ 330(7485):223–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Killip IR (2005) Radon hazard and risk in sussex, england and the factors affecting radon levels in dwellings in chalk terrain. Radiat Prot Dosim 113(1):99–107

    Article  CAS  Google Scholar 

  6. Krewski D, Lubin JH, Zielinski JM, Alavanja M, Catalan VS, Field RW et al (2005) Residential radon and risk of lung cancer: a combined analysis of 7 north american case-control studies. Epidemiology 16(2):137–145

    Article  PubMed  Google Scholar 

  7. Yu KN, Lau BMF, Nikezic D (2006) Assessment of environmental radon hazard using human respiratory tract models. J Hazard Mater 132(1):98–110

    Article  CAS  PubMed  Google Scholar 

  8. Denman AR, Rogers S, Ali A, Sinclair J, Phillips PS, Crockett RG et al (2015) Small area mapping of domestic radon, smoking prevalence and lung cancer incidence–a case study in northamptonshire, uk. J Environ Radioact 150:159–169

    Article  CAS  PubMed  Google Scholar 

  9. Pavia M, Bianco A, Pileggi C, Angelillo IF (2003) Meta-analysis of residential exposure to radon gas and lung cancer. Bull World Health Organ 81(10):732–738

    PubMed  PubMed Central  Google Scholar 

  10. NEA, IAEA (2010) Uranium 2009: resources, production and demand. OECD Publishing, Paris

    Google Scholar 

  11. Jobbágy V, Somlai J, Kovács J et al (2009) Dependence of radon emanation of red mud bauxite processing wastes on heat treatment. J Hazard Mater 172(2–3):1258–1263

    Article  CAS  PubMed  Google Scholar 

  12. Kovács T, Shahrokhi A, Sas Z, Vigh T, Somlai J (2016) Radon exhalation study of manganese clay residue and usability in brick production. J Environ Radioact 168:1–6

    Google Scholar 

  13. Sakoda A, Ishimori Y, Hanamoto K, Kataoka T, Kawabe A, Yamaoka K (2010) Experimental and modeling studies of grain size and moisture content effects on radon emanation. Radiat Meas 45(2):204–210

    Article  CAS  Google Scholar 

  14. Strong KP, Levins DM (1982) Effect of moisture content on radon emanation from uranium ore and tailings. Health Phys 42(1):27–32

    Article  CAS  PubMed  Google Scholar 

  15. Barton TP, Ziemer PL (1986) The effects of particle size and moisture content on the emanation of rn from coal ash. Health Phys 50(5):581

    Article  CAS  PubMed  Google Scholar 

  16. Markkanen M, Arvela H (1992) Radon emanation from soils. Zhejiang Soc Sci 82(4 Pt 1):2011–2024

    Google Scholar 

  17. Bossew P (2003) The radon emanation power of building materials, soils and rocks. Appl Radiat Isot 59(5–6):389

    Article  CAS  PubMed  Google Scholar 

  18. Breitner D, Arvela H, Hellmuth KH, Renvall T (2010) Effect of moisture content on emanation at different grain size fractions - a pilot study on granitic esker sand sample. J Environ Radioact 101(11):1002–1006

    Article  CAS  PubMed  Google Scholar 

  19. Myers S (1999) Predicting arsenic concentrations in the porewaters of buried uranium mill tailings. Geochim Cosmochim Acta 63(19–20):3379–3394

    Google Scholar 

  20. Lottermoser BG, Ashley PM (2005) Tailings dam seepage at the rehabilitated mary kathleen uranium mine, australia. J Geochem Explor 85(3):119–137

    Article  CAS  Google Scholar 

  21. Martin AJ, Crusius J, Mcnee JJ, Yanful EK (2003) The mobility of radium-226 and trace metals in pre-oxidized subaqueous uranium mill tailings. Appl Geochem 18(7):1095–1110

    Article  CAS  Google Scholar 

  22. Bassot S, Benitah DSS (2005) Radium behaviour during ferric oxi-hydroxides ageing. Radioprotection 40(Suppl 1):S277–S283

    Article  Google Scholar 

  23. Semkow TM, Parekh PP (2013) The role of radium distribution and porosity in radon emanation from solids. Geophys Res Lett 17(6):837–840

    Article  Google Scholar 

  24. Ishimori Y, Lange K, Martin P, Mayya YS, Phaneuf M (2013) Measurement and calculation of radon releases from NORM residues, Technical reports series No.474. International atomic energy agency. Vienna

  25. Nan H, Ding D, Li G (2014) Vegetation composition and 226Ra uptake by native plant species at a uranium mill tailings impoundment in South China. J Environ Radioact 129(129):100–106

    Google Scholar 

  26. Sui DS, Cui ZS (2009) Application of orthogonal experimental design and Tikhonov regularization method for the identification of parameters in the casting solidification process. Acta Metall Sin (English Letters) 22(1):13–21

    Article  Google Scholar 

  27. Ye YJ, Wang LH, Ding DX, Zhao YL, Fan NB (2014) Inverse method for determining radon diffusion coefficient and free radon production rate of fragmented uranium ore. Radiat Meas 68:1–6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (11575080), Hunan Provincial Natural Science Foundation of China (2018JJ2318), the 2017 Graduate Research and Innovation Project Fund (2017YCXXM02) and the 2018 Graduate Research and Innovation Project Fund (2018KYY141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-jun Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Ch., Li, S., Ye, Yj. et al. Variation rules of the radon emanation coefficient in dump-leached uranium tailing sand. J Radioanal Nucl Chem 319, 1037–1043 (2019). https://doi.org/10.1007/s10967-018-06408-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-06408-2

Keywords

Navigation