Skip to main content
Log in

The carbon and oxygen isotopic compositions and their evolution of the Xixiangchi Group carbonate rocks in Sichuan Basin and their geological implications

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Carbon and oxygen isotope analysis of Xixiangchi Group shows that the bottom boundary of the Upper Cambrian is defined for the first time. The Xixiangchi Group formed in a high salinity on shore marine sedimentary environment with a warm to dry climate and underwent a slow regression after a rapid transgression in the early and middle stages, In the late stage it entered a rapid regression after a slow transgression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu SG, Li ZW, Sun W, Deng B, Luo ZL, Wang GZ, Yong ZQ, Huang WM (2011) The basic characteristics of the oil and gas bearing basins in Sichuan Chinese. Chin J Geophys 01:233–257

    Google Scholar 

  2. Ma YS, Chen HD, Wang GJ (2009) Sequence stratigraphy and ancient geography in South China. Beijing Science Press, Beijing

    Google Scholar 

  3. Feng ZZ, Peng YM, Jin ZK, Jiang PL (2001) Lithofacies and paleo-geography of the middle and late Ordovician in South China. J Palaeogeo 04:10–24 + 96–99

  4. Mei MX, Liu ZL, Meng XQ (2006) Sequence stratigraphic division and sequence stratigraphic framework of the middle and upper Cambrian strata in the upper Yangtze region, China. Acta Sedimentol Sin 24(5):617–626

    Google Scholar 

  5. Mei MX (2007) Yangtze region Cambrian Loushan Guan Group dolomite sequence stratigraphic framework and paleogeographic background. J Palaeogeo 9(2):117–129

    Google Scholar 

  6. Guo ZW, Deng KH (1996) Formation and evolution of the Sichuan Basin. Geological Publishing House, Beijing

    Google Scholar 

  7. Deng KL (1992) Formation and evolution of Sichuan Basin and oil and gas exploration. Nat Gas Ind 12(5):7–12

    CAS  Google Scholar 

  8. Tong CG (1985) Tectonic evolution and hydrocarbon accumulation in Sichuan Basin. Geological Publishing House, Beijing

    Google Scholar 

  9. Feng ZZ, Peng YM, Jin ZK (2013) Chinese lithofacies palaeogeography of the Cambrian in South. J Palaeogeo 1:1–14

    Google Scholar 

  10. Liu MC, Yang W, Li QR et al (2008) Characteristics and stratigraphic classification and correlation of Cambrian on South Sichuan Basin. Nat Gas Geosci 19(1):100–106

    Google Scholar 

  11. Lu YH (1962) The proceedings of national conference on stratigraphy: Cambrian system of China. Science Press, Beijing

    Google Scholar 

  12. Xiang LW, Zhu ZL, Li SJ et al (1981) Strata lexicon of China: Cambrian system of China. Geological Publishing House, Beijing

    Google Scholar 

  13. Zhang ML, Xie ZY, Li X et al (2010) Lithofacies palaeogeography of Cambrian in Sichuan Basin. Acta Sedimentol Sin 28(1):128–139

    Google Scholar 

  14. Yuan L, Yao JB, Li GR et al (2013) Stratigraphic division and correlation and sedimentary characteristics of the Cambrian in Sichuan Basin. Marin Orig Petrl Geol 18(3):19–28

    Google Scholar 

  15. Keith ML, Weber JN (1964) Carbon and oxygen isotopic composition of selected limestones and fossils. Geochim Cosmochim Acta 28:1787–1816

    Article  CAS  Google Scholar 

  16. Jenkyns HC, Gale AS et al (1994) Carbon and oyxgen isotope stratigarphy of the english chalk and Iatly Segalia and its Palaeoclimatic significance. Geol Mag 131(l):1–34

    Article  Google Scholar 

  17. Wenezl B, Joachimski MM (1996) Carbon and oyxgen isotope composition of Silurian branchiopodas (Gotland/Sweden): palaeoceanographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 122:143–166

    Article  Google Scholar 

  18. Seholle PA, Arthur MA (1980) Carbon isotope fluctuations in Certaceous Pelagic limesotnes: potential stratigraphic and peotrleum exploration tool. Bull Am Ass Petorl Geol 64:67–87

    Google Scholar 

  19. Chen XS, Yi WX, Lu WZ (2004) Oil and gas reservoir in China oil and gas field. Acta Sedimentol Sin 22(2):244–253

    Google Scholar 

  20. Ren JS (1994) Composition, structure, evolution and dynamics of the Chinese mainland. Acta Geosci Sin 15:5–13

    Google Scholar 

  21. Ren JS, Wang ZX, Chen BW, Jiang CF (1999) From the global perspective of China’s tectonics: China and its adjacent areas. Acta Geosci Sin 26:9–19

    Google Scholar 

  22. Wang ZC, Zhao WZ, Peng HY (2002) Characteristics of complex petroleum system in Sichuan Basin. Petrol Explor Dev 02:26–28

    Google Scholar 

  23. Zou CN, Dong DZ, Wang SJ, Li JZ, Wang YM, Li DH (2010) Formation mechanism, geological characteristics and resource potential of shale gas in China. Petrol Explor Dev 37(6):641–653

    Article  CAS  Google Scholar 

  24. Guo DL, Zhang HL (2014) Formation and enrichment of high yield model of shale gas field in the Sichuan Basin. Petrol Explor Dev 41(1):28–36

    Article  Google Scholar 

  25. Li W, Liu JJ, Deng SH, Zhang BM, Zhou H (2015) The Sichuan Basin and its adjacent areas in late Cambrian early tectonic movement in nature and function. Acta Petrolei Sinica 05: 546–556 + 563

  26. Brand U, Veizer J (1980) Chemical diagenesis of a multicomponent carbonate system: 1, trace elements. J Sediment Res 50(4):1219–1236

    CAS  Google Scholar 

  27. Brand U, Veizer J (1981) Chemical diagenesis of a multicomponent carbonate system: 2, stable isotopes. J Sediment Res 51(3):987–997

    CAS  Google Scholar 

  28. Veizer J (1983) Chemical diagenesis of carbonate rocks: Theory and application of trace element technique//Arthur MA, Anderson TF, Kaplan IR, Veizer J, Land LS. Stable isotopes in sedimentary geology. SEPM Short Course Notes (Vol. 10). 3–1–3–100

  29. Veizer J (1983) Trace elements and isotopes in sedimentary carbonates. Rev Miner Geochem 11(1):265–299

    CAS  Google Scholar 

  30. Bruckschen P, Bruhn F, Meijer J, Stephan A, Veizer J (1995) Diagenetic alteration of calcitic fossil shells: proton microprobe (PIXE) as a trace element tool. Nucl Instr Method Phys Res B 104(1–4):427–431

    Article  CAS  Google Scholar 

  31. Kaufman AJ, Knoll AH (1995) Neoproterozoic variations in the C-isotope composition of seawater: stratigraphic and biogeochemical implications. Precamb Res 73(1–4):27–49

    Article  CAS  Google Scholar 

  32. Kaufman AJ, Knoll AH, Narbonne GM (1997) Isotopes, ice ages and terminal proterozoic earth history. Proc Natl Acad Sci 94(13):6600–6605

    Article  CAS  Google Scholar 

  33. Derry LA, Keto LS, Jacobsen SB, Knoll AH, Swett K (1989) Sr isotopic variations in upper Proterozoic carbonates from Svalbard and East greenland. Geochim Cosmochim Acta 53(9):2331–2339

    Article  CAS  Google Scholar 

  34. Derry LA, Brasier MD, Corfield RM, Yu Rozanov A, Yu Zhuravlev A (1994) Sr and C isotopes in lower Cambrian carbonates from the Siberian craton: a paleoenvironmental record during the ‘Cambrian explosion’. Earth Planet Sci Lett 128(3/4):671–681

    Article  CAS  Google Scholar 

  35. Yang ZY, Yin HF, Wu SB (1991) Geological event during permian-triassic transition in South China. Geological Publishing House, Beijing, pp 1–379

    Google Scholar 

  36. Zhang XF, Hu WX, Zhang JT (2006) Critical problems for dolomite formation and dolomitization models. Geol Sci Technol Inf 25(5):32–40

    Google Scholar 

  37. Kaufman AJ, Jacobsen SB, Knoll AH (1993) The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate. Earth Planet Sci Lett 120(3/4):409–430

    Article  CAS  Google Scholar 

  38. Deny LA, Kaufaman AJ, Jacobsen SB (1992) Sedimentary cycling and environmental chang in the late proeterozoic: evidence form stable and radiogenic isotopes. Geochim Cosmochim Acta 56:1317–1329

    Article  Google Scholar 

  39. Guo FS, Peng HM, Pan JY, Du YS, Liu LQ, Luo NH, Rao MH, Wang ZQ (2003) A probe into the carbon and oxygen isotopic characteristics of the Cambrian carbonate rocks in Jiangshan, Zhejiang and its paleo-environment significance. J Stratigr 27(4):289–297

    Google Scholar 

  40. Qing HR, Veizer J (1994) Oxygen and carbon isotopic composition of Ordovician brachiopods: implications for coeval seawater. Geochim Cosmochim Acta 58(20):4429–4442

    Article  CAS  Google Scholar 

  41. Williams DF, Lerche I, Full WE (1988) Isotope chronostratigraphy: theory and methods. Academic Press, California, pp 39–68

    Google Scholar 

  42. Wang DR, Bai ZQ (2002) Chemostratigraphic characters of the middle-upper devonian boundary in Guangxi South China. J Stratigr 26(1):50–54

    Google Scholar 

  43. Yan ZB, Guo FS, Pan JY, Guo GL, Zhang YJ (2005) Application of C, O and Sr isotope composition of carbonates in the research of paleoclimate and paleooceanic environment. Contrib Geol Miner Resour Res 20(1):54–55

    Google Scholar 

  44. Kaufman AJ, Knoll AH, Awramik SM (1992) Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions: upper Tindir group, northwestern Canada, as a test case. Geology 20(2):181–185

    Article  CAS  Google Scholar 

  45. Fairchild IJ, Marshall JD, Bertrand-Sarfati J (1990) Stratigraphic shifts in carbon isotopes from Proterozoic stromatolitic carbonates (Mauritania): influences of primary mineralogy and diagenesis. Am J Sci 290:46–79

    Google Scholar 

  46. Jing XZ, Shang CP, Xue JZ (2008) The Yangtze platform carbonate rocks of Cambrian carbon isotopic composition and its geological significance. Geochem J 02:118–128

    Google Scholar 

  47. Palmer A R (1965) Trilobites of the late Cambrian Pterocephaliid biomere in the Great Basin, United States. US Geological Survey Professional Paper (P0493), p 105

  48. Opik AA (1996) The early upper Cambrian crisis and its correlation. J Proc Roy Soc New South Wales 100:9–14

    Google Scholar 

  49. Peng SC, Robison RA (2000) Agnostid biostratigraphy across the middle-upper Cambrian boundary in human, China. J Paleontol 74(4 suppl):104

    Google Scholar 

  50. Craig H (1953) The geochemistry of the stable carbon isotopes. Geochim Cosmochim Acta 3(2):53–92

    Article  CAS  Google Scholar 

  51. Degens ET, Epstein S (1962) Relationship between 018/016 ratios in coexisting carbonates, cherts, and diatomites: geological notes. AAPG Bull 46(4):534–542

    CAS  Google Scholar 

  52. Scholle PA, Arthur MA (1980) Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. AAPG Bull 64(1):67–87

    CAS  Google Scholar 

  53. Arthur MA, Dean WE, Schlanger SO (1985) Variations in the global carboncycle during theatmospheric CO2 Cretaceous related to climate, volcanism. Geoph Monog Ser 32:504–529

    Google Scholar 

  54. Li RW, Chen JS, Zhang SK (1999) Mesoproterozoic fog fan hill group carbonate rock carbon and oxygen isotope composition and sea-level changes. Sci Bull 44:1697–1702

    Article  Google Scholar 

  55. Kaufman AJ, Knoll AH (1992) Neop rot erozoic variations in the Cisotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res 73:27–49

    Article  Google Scholar 

  56. Holser WT, Schonlaub HP, Attrep AJ, Boeckelmann K, Klein P et al (1989) A unique geochemical record at the permian/triassic boundary. Nature 337:39–44

    Article  CAS  Google Scholar 

  57. Dikens GR, O’Neil JR, Rea DK, Owen RM (1995) Dissociation of oceanic methane hydrate as a cause of the carbon isotope ex-cursion at the end of the Paleocene. Paleoceanography 10:965–972

    Article  Google Scholar 

  58. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A Neoproterocoic Snowball Earth. Science 281:1342–1346

    Article  CAS  Google Scholar 

  59. Zuo JX, Tong JN, Qiu HO & Zhao LS (2006) Evolutional char-acteristics of carbon isotope compositions from the lower Trias-sic marine carbonates, lower Yangtze region, South China. Sci China (Series D) 49(3): 225–241

  60. Zuo JX, Peng SC, Zhou CM, Yan CH, Liu GY (2006) Tectonic significance and sedimentary characteristics of turbidity successions within the Cambrian Huaqiao formation at Wangcun section in the West Hunan South China. Acta Sedimentol Sin 24(2):35–44

    Google Scholar 

  61. Zhu MY, Strauss H, Shields GA (2007) From snowballearth to the Cambrian bioradiation: calibration of Ediacaran-Cambrian earth history in South China. Palaeogeogr Palaeoclimatol Palaeoecol 254:1–6

    Article  Google Scholar 

  62. Zhu MY, Zhang J, Yang A (2007) Integrated ediacaran (Sinian) chronostratigraphy of South China. Palaeogeogr Palaeoclimatol Palaeoecol 254:7–61

    Article  Google Scholar 

  63. Peng SC, Babcock LE, Robison RA, Lin HL, Rees MN, Saltzman MR (2004) Global standard strato typesection and point for the Paibian stage and Furongian Series(upper Cam-brian). Lethaia 37:365–379

    Article  Google Scholar 

  64. Peng SC, Zhu XJ, Babcock LE, Wang HF (2004) Potential global stratotype 65. Paul CRC & Mitchell SE (1994) Is famine a common factorin marine mass extinctions. Geology 22:679–682

    Google Scholar 

  65. Paul CRC, Mitchell SE (1994) Is famine a common factorin marine mass extinctions. Geology 22:679–682

    Article  Google Scholar 

  66. Wang SF, Li W, Zhang F, Wang XZ (2008) Developmental mechanism of advantageous Xixiangchi Group reservoirs in Leshan-Longnvsi palaeohigh. Petrol Explor Dev 02:170–174

    Article  Google Scholar 

  67. Li L, Tan XC, Xia JW (2008) Effect of sea level change on Weiyuan shoal reservoir of Cambrian. Nat Gas Ind 04:19–21

    Google Scholar 

  68. Hong ZF, Liu J, Shi GJ (2000) Cambrian in Yichang area, Hubei province about Ordovician carbon and oxygen isotope record. Geol J Chin Univ 1:106–115

    Google Scholar 

  69. Yan ZB, Guo FS, Pan JY et al (2005) Application of C, O and srisotope composition of carbonates in the research of paleoclimate and paleooceanic environment. Contr Geol Miner Resour Res 20(1):53–56 (in Chinese)

    CAS  Google Scholar 

  70. Lu WC (1986) Stable isotope geochemistry. Institute of Geology Press, Chengdu, Chengdu, pp 1–334

    Google Scholar 

  71. You HT, Liu CL (2002) The palaeosalinity restoration law review. Glob Geol 21(2):111–117

    Google Scholar 

  72. Feng ZZ, Bao ZD, Zhang YS (1998) Ordos Basin. Ordovician carbonate rock lithofacies paleogeography. Geological Publishing House, Beijing, pp 1–142

    Google Scholar 

  73. Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 562–581

  74. Craig H (1965) The measurement of oxygen isotope paleotemperatures//stable isotopes in oceanographic studies and Paleotemperatures. Piza: Consiglio Nazionale delle Richerche Lab Geol Nucl 3:23

  75. Keith ML, Weber JN (1964) Carbon and oxygen isotopic composition of selected limestones and fossil. Geochim Cismoch Acta 28:1786–1861

Download references

Acknowledgements

The studies were supported by Research Institute of PetroChina Exploration and Development, in the frame of the scientific project: The oil and gas resource potential of marine carbonate rocks and the conditions and distribution rules of oil and gas fields (No.: 2011ZX05004-001). The authors wish to thank professor Li W and professor Li M for valuable discussion. The help given by dr Lu Y Z and Li X for helpful remarks in carrying out the chemical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, P., Li, W., Lu, Yz. et al. The carbon and oxygen isotopic compositions and their evolution of the Xixiangchi Group carbonate rocks in Sichuan Basin and their geological implications. J Radioanal Nucl Chem 311, 755–768 (2017). https://doi.org/10.1007/s10967-016-5102-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5102-0

Keywords

Navigation