Skip to main content
Log in

Strain-induced crystallization of natural rubber/zinc dimethacrylate composites studied using synchrotron X-ray diffraction and molecular simulation

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Natural rubber (NR) reinforced by in situ polymerization of zinc dimethacrylate (ZDMA) exhibits excellent mechanical properties. However, the corresponding reinforcement mechanism is still unclear. Using synchrotron wide-angle X-ray diffraction (WAXD) measurements, we observed that strain-induced crystallization of NR/ZDMA composites had a direct affect on the ultimate mechanical properties. An increase in ZDMA fraction resulted in a lower strain at the onset of crystallization. Further analysis revealed that three factors contributed to the reduction in onset strain, including higher whole cross-linking density due to the emergence of ionic cross-linking clusters, strain amplification of nanodispersion of poly-ZDMA (PZDMA), and the confinement effect of the filler network. The results of dynamic Monte Carlo simulation showed that the confinement effect of the filler network on chain segments favored segmental orientation in regions near the polymer–filler interface, thus inducing a decline in onset strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Flory PJ (1947) Thermodynamics of crystallization in high polymers. I. Crystallization induced by stretching. J Chem Phys 15:397–408

    Article  CAS  Google Scholar 

  2. Toki S, Sics I, Ran SF, Liu LZ, Hsiao BS, Murakami S, Senoo K, Kohjiya S (2002) New insights into structural development in natural rubber during uniaxial deformation by in situ synchrotron X-ray diffraction. Macromolecules 35:6578–6584

    Article  CAS  Google Scholar 

  3. Murakami S, Senoo K, Toki S, Kohjiya S (2002) Structural development of natural rubber during uniaxial stretching by in situ wide angle X-ray diffraction using a synchrotron radiation. Polymer 43:2117–2120

    Article  CAS  Google Scholar 

  4. Tosaka M, Murakami S, Poompradub S, Kohjiya S, Ikeda Y, Toki S, Sics I, Hsiao BS (2004) Orientation and crystallization of natural rubber network as revealed by WAXD using synchrotron radiation. Macromolecules 37:3299–3309

    Article  CAS  Google Scholar 

  5. Tosaka M, Senoo K, Kohjiya S, Ikeda Y (2007) Crystallization of stretched network chains in cross-linked natural rubber. J Appl Phys 101:084909

    Article  Google Scholar 

  6. Chenal JM, Chazeau L, Guy L, Bomal Y, Gauthier C (2007) Parameters governing strain induced crystallization in filled natural rubber. Polymer 48:1042–1046

    Article  CAS  Google Scholar 

  7. Le-Cam JB, Toussaint E (2008) Volume variation in stretched natural rubber: competition between cavitation and stress-induced crystallization. Macromolecules 41:7579–7583

    Article  CAS  Google Scholar 

  8. Trabelsi S, Albouy PA, Rault J (2002) Stress-induced crystallization around a crack tip in natural rubber. Macromolecules 35:10054–10061

    Article  CAS  Google Scholar 

  9. Andrews EH (1964) Crystalline morphology in thin films of natural rubber. II. crystallization under strain. Proc Roy Soc London A 277:562–570

    Article  CAS  Google Scholar 

  10. Yeh GSY, Hong KZ (1979) Strain-induced crystallization, Part III: Theory. Polym Eng Sci 19:395–400

    Article  CAS  Google Scholar 

  11. Nie YJ, Gao HH, Yu MH, Hu ZM, Reiter G, Hu WB (2013) Competition of crystal nucleation to fabricate the oriented semi-crystalline polymers. Polymer 54:3402–3407

    Article  CAS  Google Scholar 

  12. Nie YJ, Gao HH, Hu WB (2014) Variable trends of chain-folding in separate stages of strain-induced crystallization of bulk polymers. Polymer 55:1267–1272

    Article  CAS  Google Scholar 

  13. Bokobza L (2001) Reinforcement of elastomeric networks by fillers. Macromol Symp 169:243–260

    Article  CAS  Google Scholar 

  14. Poompradub S, Tosaka M, Kohjiya S, Ikeda Y, Toki S, Sics I, Hsiao BS (2005) Mechanism of strain-induced crystallization in filled and unfilled natural rubber vulcanizates. J Appl Phys 97:103529

    Article  Google Scholar 

  15. Rault J, Marchal J, Judeinstein P, Albouy PA (2006) Stress-induced crystallization and reinforcement in filled natural rubbers: 2H NMR study. Macromolecules 39:8356–8368

    Article  CAS  Google Scholar 

  16. Costin R, Nagel W, Ekwall R (1991) New metallic coagents for curing elastomers. Rubber Chem Technol 64:152–161

    Article  CAS  Google Scholar 

  17. Lu Y, Liu L, Yang C, Tian M, Zhang LQ (2005) The morphology of zinc dimethacrylate reinforced elastomers investigated by SEM and TEM. Eur Polym J 41:577–588

    Article  CAS  Google Scholar 

  18. Chen YK, Xu CH (2011) Crosslink network evolution of nature rubber/zinc dimethacrylate composite during peroxide vulcanization. Polym Compos 32:1505–1514

    Article  Google Scholar 

  19. Lu Y, Liu L, Shen D, Yang C, Zhang LQ (2004) Infrared study on in situ polymerization of zinc dimethacrylate in poly (α‐octylene‐co‐ethylene) elastomer. Polym Int 53:802–808

    Article  CAS  Google Scholar 

  20. Nie YJ, Huang GS, Qu LL, Zhang P, Weng GS, Wu JR (2010) Cure kinetics and morphology of natural rubber reinforced by the in situ polymerization of zinc dimethacrylate. J Appl Polym Sci 115:99–106

    Article  CAS  Google Scholar 

  21. Nomura A, Takano J, Toyoda A, Saito T (1993) Structural analysis of high strength HNBR/ZDMA composites. J Jpn Rubber Soc 66:830–838

    Article  CAS  Google Scholar 

  22. Yuan XH, Zhang Y, Peng ZL, Zhang YX (2002) In situ preparation of magnesium methacrylate to reinforce NBR. J Appl Polym Sci 84:1403–1408

    Article  CAS  Google Scholar 

  23. Dontsov A, De Candia F, Amelino L (1972) Elastic properties and structure of polybutadiene vulcanized with magnesium methacrylate. J Appl Polym Sci 16:505–518

    Article  CAS  Google Scholar 

  24. Lu Y, Liu L, Tian M, Geng H, Zhang LQ (2005) Study on mechanical properties of elastomers reinforced by zinc dimethacrylate. Eur Polym J 41:589–598

    Article  CAS  Google Scholar 

  25. Eisenberg A, Hird B, Moore RB (1990) A new multiplet-cluster model for the morphology of random ionomers. Macromolecules 23:4098–4107

    Article  CAS  Google Scholar 

  26. Nie YJ, Huang GS, Liu ZY, Qu LL, Zhang P, Weng GS, Wu JR (2010) Improved mechanical properties and special reinforcement mechanism of natural rubber reinforced by in situ polymerization of zinc dimethacrylate. J Appl Polym Sci 116:920–928

    CAS  Google Scholar 

  27. Peng Z, Liang X, Zhang Y, Zhang Y (2002) Reinforcement of EPDM by in situ prepared zinc dimethacrylate. J Appl Polym Sci 84:1339–1345

    Article  CAS  Google Scholar 

  28. Roland CM (1988) US Patent 4,720,526

  29. Xu CH, Chen YK, Zeng XR (2012) A study on the crosslink network evolution of magnesium dimethacrylate/natural rubber composite. J Appl Polym Sci 125:2449–2459

    Article  CAS  Google Scholar 

  30. Nie YJ, Huang GS, Qu LL, Wang XA, Weng GS, Wu JR (2011) New insights into thermodynamic description of strain-induced crystallization of peroxide cross-linked natural rubber filled with clay by tube model. Polymer 3234–3242

  31. Hu WB, Frenkel D (2005) Polymer crystallization driven by anisotropic interactions. Adv Polym Sci 191:1–35

    Article  CAS  Google Scholar 

  32. Dukovski I, Muthukumar M (2003) Langevin dynamics simulations of early stage shish-kebab crystallization of polymers in extensional flow. J Chem Phys 118:6648–6655

    Article  CAS  Google Scholar 

  33. Lee S, Rutledge GC (2011) Plastic deformation of semicrystalline polyethylene by molecular simulation. Macromolecules 44:3096–3108

    Article  CAS  Google Scholar 

  34. Graham RS, Olmsted PD (2009) Coarse-grained simulations of flow-induced nucleation in semicrystalline polymers. Phys Rev Lett 103:115702

    Article  Google Scholar 

  35. Koyama A, Yamamoto T, Fukao K, Miyamoto Y (2003) Molecular dynamics studies on polymer crystallization from a stretched amorphous state. J Macromol Sci Phys 42:821–831

    Article  Google Scholar 

  36. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  37. Horkay F, McKenna GB, Deschamps P, Geissler E (2000) Neutron scattering properties of randomly cross-linked polyisoprene gels. Macromolecules 33:5215–5220

    Article  CAS  Google Scholar 

  38. Valentín JL, Carretero-González J, Mora-Barrantes I, Chassé W, Saalwächter K (2008) Uncertainties in the determination of cross-link density by equilibrium swelling experiments in natural rubber. Macromolecules 41:4717–4729

    Article  Google Scholar 

  39. Zhou WM, Chen L, Lu J, Qi ZM, Huang ND, Li LB, Huang WX (2014) Imaging the strain induced carbon black filler network structure breakage with nano X-ray tomography. RSC Adv 4:54500–54505

    Article  CAS  Google Scholar 

  40. Morozov IA (2013) Identification of primary and secondary filler structures in a polymer matrix by atomic force microscopy images analysis methods. Polym Compos 34:433–442

    Article  CAS  Google Scholar 

  41. Ikeda Y, Yasuda Y, Hijikata K, Tosaka M, Kohjiya S (2008) Comparative study on strain-induced crystallization behavior of peroxide cross-linked and sulfur cross-linked natural rubber. Macromolecules 41:5876–5884

    Article  CAS  Google Scholar 

  42. Ikeda Y, Yasuda Y, Makino S, Yamamoto S, Tosaka M, Senoo K, Kohjiya S (2007) Strain-induced crystallization of peroxide-crosslinked natural rubber. Polymer 48:1171–1175

    Article  CAS  Google Scholar 

  43. Suzuki T, Osaka N, Endo H, Shibayama M, Ikeda Y, Asai H, Higashitani N, Kokubo Y, Kohjiya S (2010) Nonuniformity in cross-linked natural rubber as revealed by contrast-variation small-angle neutron scattering. Macromolecules 43:1556–1563

    Article  CAS  Google Scholar 

  44. Valentín JL, Mora-Barrantes I, Carretero-González J, López-Manchado MA, Sotta P, Long DR, Saalwächter K (2010) Novel experimental approach to evaluate filler-elastomer interactions. Macromolecules 43:334–346

    Article  Google Scholar 

  45. Wang LL, Ning NY, Zhang LQ, Lu YL, Ming T, Tung C (2013) Filler dispersion evolution of acrylonitrile–butadiene rubber/graphite nanocomposites during processing. Compos Part A 47:135–142

    Article  CAS  Google Scholar 

  46. Payne AR (1962) The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J Appl Polym Sci 6:57–63

    Article  CAS  Google Scholar 

  47. Chen YK, Xu CH (2011) Specific nonlinear viscoelasticity behaviors of natural rubber and zinc dimethacrylate composites due to multi-crosslinking bond interaction by using rubber process analyzer 2000. Polym Compos 32:1593–1600

    Article  CAS  Google Scholar 

  48. Chen YK, Xu CH, Cao LM, Wang YP, Cao XD (2012) PP/EPDM-based dynamically vulcanized thermoplastic olefin with zinc dimethacrylate: preparation, rheology, morphology, crystallization and mechanical properties. Polym Test 31:728–736

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Research Foundation of Jiangsu University (NO. 14JDG059), the National Natural Science Foundation of China (No. 21404050), and the Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1402019A). We also wish to thank Professors Liangbin Li and Guoqiang Pan for their invaluable assistance in the Synchrotron WAXD experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijing Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Y. Strain-induced crystallization of natural rubber/zinc dimethacrylate composites studied using synchrotron X-ray diffraction and molecular simulation. J Polym Res 22, 1 (2015). https://doi.org/10.1007/s10965-014-0642-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0642-x

Keywords

Navigation