Skip to main content
Log in

Semi-uniform Feller Stochastic Kernels

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

This paper studies transition probabilities from a Borel subset of a Polish space to a product of two Borel subsets of Polish spaces. For such transition probabilities it introduces and studies the property of semi-uniform Feller continuity. This paper provides several equivalent definitions of semi-uniform Feller continuity and establishes its preservation under integration. The motivation for this study came from the theory of Markov decision processes with incomplete information, and this paper provides the fundamental results useful for this theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Aoki, M.: Optimal control of partially observable Markovian systems. J. Frankl. Inst. 280(5), 367–386 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. Åström, K.J.: Optimal control of Markov processes with incomplete state information. J. Math. Anal. Appl. 10, 174–205 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertsekas, D.P., Shreve, S.E.: Stochastic Optimal Control: The Discrete-Time Case. Academic Press, New York (1978)

    MATH  Google Scholar 

  4. Bogachev, V.I.: Measure Theory, vol. II. Springer-Verlag, Berlin (2007)

    Book  MATH  Google Scholar 

  5. Dynkin, E.B.: Controlled random sequences. Theory Probab. Appl. 10(1), 1–14 (1965)

    Article  MATH  Google Scholar 

  6. Dynkin, E.B., Yushkevich, A.A.: Controlled Markov Processes. Springer-Verlag, New York (1979)

    Book  Google Scholar 

  7. Feinberg, E.A., Kasyanov, P.O.: Equivalent conditions for weak continuity of nonlinear filters. arXiv:2207.07544 (2022)

  8. Feinberg, E.A., Kasyanov, P.O., Liang, Y.: Fatou’s lemma in its classical form and Lebesgue’s convergence theorems for varying measures with applications to Markov decision processes. Theory Probab. Appl. 65(2), 270–291 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feinberg, E.A., Kasyanov, P.O., Royset, J.O.: Epi-convergence of expectation functions under varying measures and integrands. J. Convex Anal. 30(2). arXiv:2208.03805 (2023) (to appear)

  10. Feinberg, E.A., Kasyanov, P.O., Zgurovsky, M.Z.: Convergence of probability measures and Markov decision models with incomplete information. Proc. Steklov Inst. Math. 287(1), 96–117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feinberg, E.A., Kasyanov, P.O., Zgurovsky, M.Z.: Uniform Fatou’s lemma. J. Math. Anal. Appl. 444(1), 550–567 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feinberg, E.A., Kasyanov, P.O., Zgurovsky, M.Z.: Partially observable total-cost Markov decision processes with weakly continuous transition probabilities. Math. Oper. Res. 41(2), 656–681 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feinberg, E.A., Kasyanov, P.O., Zgurovsky, M.Z.: Markov decision processes with incomplete information and semi-uniform Feller transition probabilities. SIAM J. Control. Optim. 60, 2488–2513 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feinberg, E.A., Kasyanov, P.O., Zgurovsky, M.Z.: Average cost Markov decision processes with semi-uniform Feller transition probabilities. In: Piunovskiy, A., Zhang, Y. (eds.) Modern Trends in Controlled Stochastic Processes: Theory and Applications, pp. 1–18. Springer Nature, Cham (2021)

    MATH  Google Scholar 

  15. Hernández-Lerma, O.: Adaptive Markov Control Processes. Springer-Verlag, New York (1989)

    Book  MATH  Google Scholar 

  16. Kara, A.D., Saldi, N., Yüksel, S.: Weak Feller property of non-linear filters. Syst. Control Lett. 134, 104512 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ma, L.: Sequential convergence on the space of Borel measures. arXiv:2102.05840 (2021)

  18. Papanicolaou, G.C.: Asymptotic analysis of stochastic equations. In: Rosenblatt, M. (ed.) Studies in Probability Theory, pp. 111–179. Mathematical Association of America, Washington, DC (1978)

    Google Scholar 

  19. Parthasarathy, K.R.: Probability Measures on Metric Spaces. Academic Press, New York (1967)

    Book  MATH  Google Scholar 

  20. Rhenius, D.: Incomplete information in Markovian decision models. Ann. Stat. 2(6), 1327–1334 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  22. Rudin, W.: Principles of Mathematical Analysis, 2nd edn. McGraw-Hill Inc, New York (1964)

    MATH  Google Scholar 

  23. Runggaldier, W.J., Stettner, L.: Approximations of Discrete Time Partially Observed Control Problems. Applied Mathematics Monographs CNR, Giardini Editori, Pisa (1994)

    Google Scholar 

  24. Schäl, M.: On dynamic programming: compactness of the space of policies. Stoch. Process. Appl. 3, 345–364 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shiryaev, A.N.: On the theory of decision functions and control by an observation process with incomplete data. Transactions of the Third Prague Conference on Information Theory, Statistical Decision Functions, Random Processes (Prague, 1962), pp. 657–681 (in Russian); Engl. transl. in Select. Transl. Math. Statist. Probab. 6(1966), 162–188 (1964)

  26. Shiryaev, A.N.: Some new results in the theory of controlled random processes. Transactions of the Fourth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes (Prague, 1965), pp. 131–201 (in Russian); Engl. transl. in Select. Transl. Math. Statist. Probab. 8(1969), 49–130 (1967)

  27. Smallwood, R.D., Sondik, E.J.: The optimal control of partially observable Markov processes over a finite horizon. Oper. Res. 21(5), 1071–1088 (1973)

    Article  MATH  Google Scholar 

  28. Yushkevich, A.A.: Reduction of a controlled Markov model with incomplete data to a problem with complete information in the case of Borel state and control spaces. Theory Probab. Appl. 21(1), 153–158 (1976)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We thank Janey (Huizhen) Yu and Yi Zhang for valuable remarks. The second and the third authors were partially supported by the National Research Foundation of Ukraine, Grant No. 2020.01/0283. The second author was partially supported by a U4U non-residential fellowship by UC Berkeley Economics/Haas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene A. Feinberg.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feinberg, E.A., Kasyanov, P.O. & Zgurovsky, M.Z. Semi-uniform Feller Stochastic Kernels. J Theor Probab 36, 2262–2283 (2023). https://doi.org/10.1007/s10959-022-01230-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-022-01230-9

Keywords

Mathematics Subject Classification (2020)

Navigation