Skip to main content
Log in

Embrechts–Goldie’s Problem on the Class of Lattice Convolution Equivalent Distributions

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We show that the class of lattice convolution equivalent distributions is not closed under convolution roots. We prove that the class of lattice convolution equivalent distributions is closed under convolution roots under the assumption of the exponentially asymptotic decreasing condition. This result is extended to the class \(\mathcal {S}_{\Delta }\) of \(\Delta \)-subexponential distributions. As a corollary, we show that the class \(\mathcal {S}_{\Delta }\) is closed under convolution roots in the class \(\mathcal {L}_{\Delta }\). Moreover, we prove that the class of lattice convolution equivalent distributions is not closed under convolutions. Finally, we give a survey on the closure under convolution roots of the other distribution classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asmussen, S., Foss, S., Korshunov, D., D. : Asymptotics for sums of random variables with local subexponential behaviour. J. Theoret. Probab. 16, 489–518 (2003)

  2. Bertoin, J., Doney, R.A.: Some asymptotic results for transient random walks. Adv. Appl. Probab. 28, 207–226 (1996)

  3. Bingham, N.H., Goldie, C.M., Teugels, J.L. : Regular variation, Cambridge University Press (1984)

  4. Chen, W., Yu, C., Wang, Y.: Some discussions on the local distribution classes. Statist. Probab. Lett. 83, 1654–1661 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chover, J., Ney, P., Wainger, S.: Functions of probability measures. J. D Analyse Math. 26, 255–302 (1973)

  6. Cui, Z., Wang, Y., Xu, H. : Some positive conclusions related to the Embrechts-Goldie conjecture. arXiv:1609.00912 (2016)

  7. Embrechts, P., Goldie, C.M.: On closure and factorization properties of subexponential and related distributions. J. Aust. Math. Soc. A 29, 243–256 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  8. Embrechts, P., Goldie, C.M.: On convolution tails. Stochastic Process. Appl. 13, 263–278 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Embrechts, P., Goldie, C.M., Veraverbeke, N.: Subexponentiality and infinite divisibility. Z. Wahrscheinlichkeitstheorie Verw. Gebiet. 49, 335–347 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  10. Embrechts, P., Hawkes, J.: A limit theorem for the tails of discrete infinitely divisible laws with applications to fluctuation theory. J. Australian Math. Soc. 32, 412–422 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Foss, S. Korshunov, D., Zachary, S. : An introduction to heavy-tailed and subexponential distributions, Second edition. Springer Series in Operations Research and Financial Engineering. Springer, New York, (2013)

  12. Klüppelberg, C.: Asymptotic ordering of distribution functions on convolution semigroup. Semigroup Forum. 40, 77–92 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Klüppelberg, C., Villasenor, J.A.: The full solution of the convolution closure problem for convolution-equivalent distributions. J. Math. Anal. Appl. 60, 79–92 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Leslie, J.R.: On the non-closure under convolution of the subexponential family. J. Appl. Probab. 26, 58–66 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pakes, A.G.: Convolution equivalence and infinite divisibility. J. Appl. Probab. 41, 407–424 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pakes, A.G.: Convolution equivalence and infinite divisibility: corrections and corollaries. J. Appl. Probab. 44, 295–305 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sato, K.: Lévy processes and infinitely divisible distributions, cambridge studies in advanced mathematics, 68 Cambridge Univ. Press. (2013)

  18. Shimura, T., Watanabe, T.: Infinite divisibility and generalized subexponentiality. Bernoulli 11, 445–469 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shimura, T., Watanabe, T.: On the convolution roots in the convolution equivalent class. Instit. Statist. Math. Cooperative Res. Report 175, 1–15 (2005)

    Google Scholar 

  20. Shimura, T., Watanabe, T. : Subexponential densities of compound Poisson sums and the supremum of a random walk. to appear in Kyoto J. Math. (2021)

  21. Wang, Y., Wang, K.: Random walks with non-convolution equivalent increments and their applications. J. Math. Anal. Appl. 374, 88–105 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wang, Y., Xu, H., Cheng, D., Yu, C.: The local asymptotic estimation for the supremum of a random walk. Stat. Pap. 59, 99–126 (2018)

    Article  MATH  Google Scholar 

  23. Watanabe, T.: Convolution equivalence and distributions of random sums. Probab. Theory Related Fields 142, 367–397 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Watanabe, T.: The Wiener condition and the conjectures of Embrechts and Goldie. Ann. Probab. 47, 1221–1239 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  25. Watanabe, T.: Two hypothesis on the exponential class in in the class of \(O\)-subexponential infinitely divisible distributions. J. Theoret. Probab. 34, 852–873 (2021)

    Article  MATH  MathSciNet  Google Scholar 

  26. Watanabe, T., Yamamuro, K.: Local subexponentiality and self-decomposability. J. Theoret. Probab. 23, 1039–1067 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Watanabe, T., Yamamuro, K.: Ratio of the tail of an infinitely divisible distribution on the line to that of its Lévy measure. Electron. J. Probab. 15, 44–74 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Watanabe, T., Yamamuro, K.: Two non-closure properties on the class of subexponential densities. J. Theoret. Probab. 30, 1059–1075 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wiener, N.: Tauberian theorems. Ann. of Math. (2) 33, 1–100 (1932)

  30. Xu, H., Foss, S., Wang, Y.: Convolution and convolution-root properties of longtailed distributions. Extremes 18, 605–628 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  31. Xu, H., Wang, Y., Cheng, D., Yu, C.: On the closure under convolution roots related to an infinitely divisible distribution in the distribution class \(\cal{L}(\gamma )\). arXiv:1512.01792 (2015)

  32. Yu, C., Wang, Y., Cui, Z.: Lower limits and upper limits for tails of random sums supported on R. Statist. Probab. Lett. 80, 1111–1120 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiro Watanabe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, T. Embrechts–Goldie’s Problem on the Class of Lattice Convolution Equivalent Distributions. J Theor Probab 35, 2622–2642 (2022). https://doi.org/10.1007/s10959-021-01130-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-021-01130-4

Keywords

Mathematics Subject Classification (2020)

Navigation