Skip to main content
Log in

Integral Representations for the Hartman–Watson Density

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

This paper concerns the density of the Hartman–Watson law. Yor (Z Wahrsch Verw Gebiete 53:71–95, 1980) obtained an integral formula that gives a closed-form expression of the Hartman–Watson density. In this paper, based on Yor’s formula, we provide alternative integral representations for the density. As an immediate application, we recover in part a result of Dufresne (Adv Appl Probab 33:223–241, 2001) that exhibits remarkably simple representations for the laws of exponential additive functionals of Brownian motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alili, L., Gruet, J.-C.: An explanation of a generalized Bougerol’s identity in terms of hyperbolic Brownian motion. In: Exponential Functionals and Principal Values Related to Brownian Motion: A Collection of Research Papers, Yor, M. (ed.), pp. 15–33, Biblioteca de la Revista Matemática Iberoamericana, Rev. Mat. Iberoamericana, Madrid (1997)

  2. Bernhart, G., Mai, J.-F.: A note on the numerical evaluation of the Hartman–Watson density and distribution function. In: Glau, K., Scherer, M., Zagst, R. (eds.) Innovations in Quantitative Risk Management, pp. 337–345. Springer, Cham (2015)

    Google Scholar 

  3. Borodin, A.N., Salminen, P.: Handbook of Brownian Motion—Facts and Formulae, corrected reprint of 2nd ed., 2002, Birkhäuser, Basel (2015)

  4. Carr, P., Schröder, M.: Bessel processes, the integral of geometric Brownian motion, and Asian options, Teor. Veroyatnost. i Primenen. 48, 503–533 (2003); translation in Theory of Probab. Appl. 48, 400–425 (2004)

  5. Dufresne, D.: The integral of geometric Brownian motion. Adv. Appl. Probab. 33, 223–241 (2001)

    Article  MathSciNet  Google Scholar 

  6. Hariya, Y.: On some identities in law involving exponential functionals of Brownian motion and Cauchy random variable. Stoch. Process. Appl. 130, 5999–6037 (2020)

    Article  MathSciNet  Google Scholar 

  7. Hartman, P., Watson, G.S.: “Normal” distribution functions on spheres and the modified Bessel functions. Ann. Probab. 2, 593–607 (1974)

    Article  MathSciNet  Google Scholar 

  8. Jakubowski, J., Wiśniewolski, M.: On hyperbolic Bessel processes and beyond. Bernoulli 19, 2437–2454 (2013)

    Article  MathSciNet  Google Scholar 

  9. Jakubowski, J., Wiśniewolski, M.: Another look at the Hartman–Watson distributions. Potential Anal. 53, 1269–1297 (2020)

  10. Lebedev, N.N.: Special Functions and Their Applications. Dover, New York (1972)

    MATH  Google Scholar 

  11. Lyasoff, A.: Another look at the integral of exponential Brownian motion and the pricing of Asian options. Finance Stoch. 20, 1061–1096 (2016)

    Article  MathSciNet  Google Scholar 

  12. Matsumoto, H., Yor, M.: An analogue of Pitman’s \(2M-X\) theorem for exponential Wiener functionals, Part I: a time-inversion approach. Nagoya Math. J. 159, 125–166 (2000)

    Article  MathSciNet  Google Scholar 

  13. Matsumoto, H., Yor, M.: On Dufresne’s relation between the probability laws of exponential functionals of Brownian motions with different drifts. Adv. Appl. Probab. 35, 184–206 (2003)

    Article  MathSciNet  Google Scholar 

  14. Matsumoto, H., Yor, M.: Exponential functionals of Brownian motion, I: probability laws at fixed time. Probab. Surv. 2, 312–347 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Matsumoto, H., Yor, M.: Exponential functionals of Brownian motion, II: some related diffusion processes. Probab. Surv. 2, 348–384 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Schröder, M.: On the integral of geometric Brownian motion. Adv. Appl. Probab. 35, 159–183 (2003)

    Article  MathSciNet  Google Scholar 

  17. Vakeroudis, S.: Bougerol’s identity in law and extensions. Probab. Surv. 9, 411–437 (2012)

    Article  MathSciNet  Google Scholar 

  18. Yor, M.: Loi de l’indice du lacet Brownien, et distribution de Hartman–Watson. Z. Wahrsch. Verw. Gebiete 53, 71–95 (1980)

  19. Yor, M.: On some exponential functionals of Brownian motion. Adv. Appl. Probab. 24, 509–531 (1992), also in: [20], pp. 23–48

  20. Yor, M.: Exponential Functionals of Brownian Motion and Related Processes. Springer, Berlin (2001)

    Book  Google Scholar 

Download references

Acknowledgements

The author would like to thank anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuu Hariya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported in part by JSPS KAKENHI Grant Number 17K05288.

Appendix

Appendix

We complete the proof of Lemma 2.1.

Proof of (ii) \(\Rightarrow \) (iii) in Lemma 2.1 Given \(x\in \mathbb {R}\), we integrate both sides of (2.3) multiplied by \(e^{-r\cosh x}\) with respect to \(r\ge 0\). Then by Fubini’s theorem, the left-hand side turns into that of (2.4). Therefore, it suffices to show that

$$\begin{aligned} \int _{0}^{\infty }\mathrm{d}r\,e^{-r\cosh x}\, \mathbb {E}\!\left[ G(B_{t})\cosh B_{t}\cos (r\sinh B_{t}) \right] =\mathbb {E}\!\left[ \frac{G(B_{t})}{\cosh (x+B_{t})} \right] . \end{aligned}$$
(A.1)

By the latter condition in (2.1), we may also use Fubini’s theorem to rewrite the left-hand side of the claimed identity (A.1) as

$$\begin{aligned}&\mathbb {E}\!\left[ G(B_{t})\cosh B_{t} \int _{0}^{\infty }\mathrm{d}r\,e^{-r\cosh x} \cos (r\sinh B_{t}) \right] \nonumber \\&\quad =\mathbb {E}\!\left[ G(B_{t}) \frac{\cosh x\cosh B_{t}}{\cosh ^{2}x+\sinh ^{2}B_{t}} \right] . \end{aligned}$$
(A.2)

On the other hand, by the symmetry of \(G\), the right-hand side of (A.1) is equal to

$$\begin{aligned}&\frac{1}{2}\mathbb {E}\!\left[ G(B_{t})\left\{ \frac{1}{\cosh (x+B_{t})}+\frac{1}{\cosh (x-B_{t})} \right\} \right] \\&\quad =\mathbb {E}\!\left[ G(B_{t}) \frac{\cosh x\cosh B_{t}}{\cosh (x+B_{t})\cosh (x-B_{t})} \right] . \end{aligned}$$

Noting the fact that

$$\begin{aligned} \begin{aligned} \cosh (x+y)\cosh (x-y)&=\frac{1}{2}\left\{ \cosh (2x)+\cosh (2y) \right\} \\&=\cosh ^{2}x+\sinh ^{2}y \end{aligned} \end{aligned}$$
(A.3)

for any \(x,y\in \mathbb {R}\), we compare the last expression with (A.2) to conclude identity (A.1). \(\square \)

We turn to the proof of the implication from (iii) to (i). To this end, we prepare the following lemma:

Lemma A.1

For every \(x, b\in \mathbb {R}\), it holds that

$$\begin{aligned} \int _{\mathbb {R}} \frac{\mathrm{d}y}{\cosh (x+y)}\, \frac{1}{\cosh (2b)+\cosh (2y)} =\frac{\pi }{2\cosh b\left( \cosh b+\cosh x\right) }. \end{aligned}$$

Proof

We may assume \(|x|\ne |b|\); validity in the case \(|x|=|b|\) is verified by passing to the limit. By symmetrization and by the relation \( \cosh (2b)+\cosh (2y)=2\left( \cosh ^{2}b+\sinh ^{2}y \right) \), the left-hand side of the claimed identity is equal to

$$\begin{aligned} \frac{1}{4}\int _{\mathbb {R}} \mathrm{d}y\left\{ \frac{1}{\cosh (x+y)}+\frac{1}{\cosh (x-y)} \right\} \frac{1}{\cosh ^{2}b+\sinh ^{2}y}, \end{aligned}$$

which is rewritten, due to relation (A.3), as

$$\begin{aligned}&\frac{\cosh x}{2}\int _{\mathbb {R}}\mathrm{d}y\, \frac{\cosh y}{ \left( \cosh ^{2}x+\sinh ^{2}y\right) \! \left( \cosh ^{2}b+\sinh ^{2}y\right) }\\&\quad =\frac{\cosh x}{2\left( \cosh ^{2}b-\cosh ^{2}x\right) } \int _{\mathbb {R}}\mathrm{d}z\left( \frac{1}{\cosh ^{2}x+z^{2}}-\frac{1}{\cosh ^{2}b+z^{2}} \right) \\&\quad =\frac{\cosh x}{2\left( \cosh ^{2}b-\cosh ^{2}x\right) } \left( \frac{\pi }{\cosh x}-\frac{\pi }{\cosh b} \right) , \end{aligned}$$

where we changed the variables with \(\sinh y=z\) in the second line. Now the claimed identity follows. \(\square \)

We are prepared to finish the proof of Lemma 2.1.

Proof of (iii) \(\Rightarrow \) (i) in Lemma 2.1 We appeal to the injectivity of Fourier transform. For this purpose, we first observe that

$$\begin{aligned} \int _{\mathbb {R}}\mathrm{d}x\,\mathbb {E}\!\left[ \frac{|F(B_{t})|\cosh B_{t}}{\cosh (2B_{t})+\cosh (2x)} \right]<\infty ,&\int _{\mathbb {R}}\mathrm{d}x\,\mathbb {E}\!\left[ \frac{|G(B_{t})|}{\cosh (x+B_{t})} \right] <\infty . \end{aligned}$$
(A.4)

Indeed, the former observation is immediate from (2.6) and the former condition in (2.1), while the latter is clear by the latter condition in (2.1). For an arbitrarily fixed \(\xi \in \mathbb {R}\), we integrate both sides of (2.4) multiplied by \(\cos (\xi x)\) with respect to \(x\in \mathbb {R}\). Then by the latter finiteness in (A.4) and Fubini’s theorem, the right-hand side turns into

$$\begin{aligned} \mathbb {E}\!\left[ G(B_{t})\int _{\mathbb {R}}\mathrm{d}x\,\frac{\cos (\xi x)}{\cosh (x+B_{t})} \right]&=\frac{\pi }{\cosh (\frac{\pi }{2}\xi )}\mathbb {E}\!\left[ G(B_{t})\cos (\xi B_{t}) \right] , \end{aligned}$$
(A.5)

where we used the fact that

$$\begin{aligned} \int _{\mathbb {R}}\mathrm{d}x\,\frac{\cos (\xi x)}{\cosh x} =\frac{\pi }{\cosh (\frac{\pi }{2}\xi )}, \end{aligned}$$
(A.6)

which is verified by standard residue calculus. On the other hand, as for the left-hand side of (2.4), we have

$$\begin{aligned}&\int _{\mathbb {R}}\mathrm{d}x\,\cos (\xi x)\mathbb {E}\!\left[ \frac{F(B_{t})}{\cosh B_{t}+\cosh x} \right] \\&\quad =\frac{2}{\pi }\int _{\mathbb {R}}\mathrm{d}x\,\cos (\xi x) \mathbb {E}\!\left[ F(B_{t})\cosh B_{t} \int _{\mathbb {R}}\frac{\mathrm{d}y}{\cosh (x+y)} \frac{1}{\cosh (2B_{t})+\cosh (2y)} \right] \\&\quad =\frac{2}{\pi }\int _{\mathbb {R}}\mathrm{d}y\, \mathbb {E}\!\left[ \frac{F(B_{t})\cosh B_{t}}{\cosh (2B_{t})+\cosh (2y)} \right] \int _{\mathbb {R}}\mathrm{d}x\,\frac{\cos (\xi x)}{\cosh (x+y)}\\&\quad =\frac{2}{\cosh (\frac{\pi }{2}\xi )}\int _{\mathbb {R}}\mathrm{d}y\,\cos (\xi y) \mathbb {E}\!\left[ \frac{F(B_{t})\cosh B_{t}}{\cosh (2B_{t})+\cosh (2y)} \right] , \end{aligned}$$

where we used Lemma A.1 for the second line, Fubini’s theorem for the third thanks to the former finiteness in (A.4), and fact (A.6) for the fourth. Since the last expression agrees with (A.5) for any \(\xi \in \mathbb {R}\) and the function \(G\) is assumed to be symmetric, the injectivity of Fourier transform entails relation (2.2). The proof completes. \(\square \)

Remark A.1

By using Lemma A.1, implication (i) \(\Rightarrow \) (iii) may also be proven in the same manner as in the proof of (i) \(\Rightarrow \) (ii) given in Sect. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariya, Y. Integral Representations for the Hartman–Watson Density. J Theor Probab 35, 209–230 (2022). https://doi.org/10.1007/s10959-020-01067-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-020-01067-0

Keywords

Mathematics Subject Classifications 2010

Navigation