Skip to main content
Log in

Analytic methods in quantum computing

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Here we consider a model of quantum computation, based on the monodromy representation of a Fuchsian system. The rôle of local and entangling operators in monodromic quantum computing is played by monodromy matrices of connections with logarithmic singularities acting on the fiber of a holomorphic vector bundle as on the space of qubits. The leading theme is the problem of constructing a set of universal gates as monodromy operators induced from a connection with logarithmic singularity. In the formal scheme developed by us, already known models — topological and holonomic — can be incorporated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms, Wiley, New York (1975).

    Google Scholar 

  2. D. V. Anosov and A. A. Bolibruch, The Riemann-Hilbert Problem, Asp. Math., Vieweg, Braunschweig, Wiesbaden (1994).

    MATH  Google Scholar 

  3. D. Ataronov, Win van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, Adiabatic quantum computation is equivalent to standard quantum computation, ArXiv: quant-ph/0405098.

  4. A. Barenco, C. Bennett, R. Cleve, D. DiVincenzo, N. Margulus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev., A2, 3457–3467 (1995).

    Google Scholar 

  5. P. Benioff, Models of quantum Turing machines, ArXiv: quant-ph/9708054.

  6. M. Berry, “Quantal phase factors accompanying adiabatatic changes,” Proc. Royal Soc. London, A392, 45–57 (1984).

    MathSciNet  Google Scholar 

  7. P. O. Boykin, T. Mor, M. Pulver, V. Roychowdhury, and F. Vatan, “On universal and Fault-Tolerant quantum computing: A novel basis and a new constructive proof of universality for Shor’s basis,” in: Proc. 40th Ann. Symp. on Foundations of Comput. Sci., Los Alamitos (1999), pp. 486–494.

  8. J.-L. Brylinski and R. Brylinski, Universal quantum gates, ArXiv: quant-ph/0108062.

  9. K.-T. Chen, “Iterated path integrals,” Bull. Amer. Math. Soc., 83, No. 5 (1977).

    Google Scholar 

  10. P. A. Clarkson and P. J. Olver, “Symmetry and the Chazy equation,” J. Differ. Equations, 124, No. 1, 225–246 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  11. D. Deutsch, “Quantum theory, the Church-Turing principle and the universal quantum computer,” Proc. London Roy. Soc., Ser. A, 400, 97–117 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  12. L. M. Duan, J. I. Cirac, and P. Zoller, “Geometric manipulation of trapped ions for quantum computation,” Science, 292, 1695 (2001).

    Article  Google Scholar 

  13. H. Dye, Unitary solution to the Yang-Baxter equation in dimension four, LANL quant-ph/0211050.

  14. A. Ekert, M. Ericsson, P. Hayden, H. Inamori, J. A. Jones, D. K. L. Oi, V. Vedral, “Geometric quantum computation,” J. Mod. Opt., 47, Nos. 14–15, 2501–2513 (2000).

    MATH  MathSciNet  Google Scholar 

  15. Experimental Proposals for Quantum Computation, S. L. Braunstein, H.-K. Lo, and P. Kok (eds.), Fortschritte der Physik, Prog. Physics, 48, 767–1138 (2000).

  16. R. Feynman, “Quantum mechanical computations,” Optics News, 11, 11, February (1985).

  17. M. Freedman, “P/NP and the quantum field computer,” Proc. Natl. Acad. Sci. USA, 95, 98–100 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  18. M. H. Freedman, A. Kitaev, and Z. Wang, Simulation of topological field theries by quantum computer, ArXiv: quant-ph/0001071.

  19. K. Fujii, More on optical holonomic quantum computer, ArXiv: quant-ph/0005129.

  20. K. Fujii, Mathematical foundations of holonomic quantum computer, ArXiv: quant-ph/0004102.

  21. G. Giorgadze, “G-Systems and holomorphic principal bundles on Riemann surfaces,” J. Dynam. Control Systems, 8, No. 2, 245–291 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  22. G. Giorgadze, “Monodromic approach to quantum computing,” Int. J. Mod. Phys., B16, No. 30, 4593–4605 (2002).

    Google Scholar 

  23. G. Giorgadze, “Holomorphic quantum computing,” Bull. Georgian Acad. Sci., 166, No. 2, 228–230 (2002).

    MathSciNet  Google Scholar 

  24. G. Giorgadze, “Holomorphic structures and connetions on low-dimensional vector bundles on the Riemann sphere,” Bull. Soc. Sci. Lett. Lodz, 52, 93–100 (2002).

    MATH  MathSciNet  Google Scholar 

  25. G. Giorgadze, “On the existence of a irreducible connections and its application,” Bull. Georgian Acad. Sci., 168, No. 2, 227–229 (2003).

    MathSciNet  Google Scholar 

  26. G. Giorgadze, “On representation of connections by exponential iterated integral,” Bull. Georgian Acad. Sci., 168, No. 3, 413–416 (2003).

    Google Scholar 

  27. G. Giorgadze, “Regular systems on Riemann surfaces,” J. Math. Sci., 118, No. 5, 5347–5399 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  28. G. Giorgadze, “On the Hamiltonians induced from a Fuchsian system,” Mem. Diff. Equat. Math. Phys., 31, 69–82 (2004).

    MATH  MathSciNet  Google Scholar 

  29. G. Giorgadze and G. Khimshiashvili, “On Schrödinger equations of Okubo type,” J. Dynam. Control Systems, 10, No. 2, 171–186 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  30. V. A. Golubeva and V. P. Leksin, “On two types of representations of braid group associated with the Knizhnik-Zamolodchikov equation of the B n type,” J. Dynam. Control Systems, 5, No. 4, 565–596 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  31. Y. Haraoka, “Canonical forms of differential equations free from accessory parameters,” SIAM J. Math. Anal., 25, 1203–1226 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  32. Y. Haraoka, “Monodromy representation of the system of differential equation free from accessory parameters,” SIAM J. Math. Anal., 25, 1595–1621 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  33. E. L. Ince, Ordinary Differential Equations, Dover, (1956).

  34. E. Kamke, Differentalgleichungen. Lüsungsmethoden und Lösungen, Leipzig (1959).

  35. T. Kato, K. Nakamura, M. Lakshmanan, “Analytic calculation of nonadiabatic transition probabilities from monodromy of differential equations,” J. Phys. A: Math. Gen., 36, 5803–5815 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  36. L. Kauffman and S. Lomonaco, Braiding operators are universal quantum gates, LANL quant-ph/0401090.

  37. T. Kieu, A refurmalition of Hilbert’s tenth problem through quantum mechanics, ArXiv: quant-ph/0111063.

  38. A. Kitaev, “Quantum computations: algorithms and error corection,” Russ. Math. Surv., 52, No. 6, 1191–1249 (1995).

    Article  MathSciNet  Google Scholar 

  39. V. G. Knizhnik and A. B. Zamolodchikov, “Current algebras and Wess-Zumino models in two dimensions,” Nucl. Phys., B247, 83–103 (1984).

    Article  MathSciNet  Google Scholar 

  40. T. Kohno, “Monodromy representations of braid groups and Yang-Baxter equation,” Ann. Inst. Fourier, 37, No. 4, 139–160 (1987).

    MATH  MathSciNet  Google Scholar 

  41. T. Kohno, “Hecke algebra representations of braid groups and classical Yang-Baxter equation,” Adv. Stud. Pure Math., 28, 255–269 (1988).

    MathSciNet  Google Scholar 

  42. B. Kraus and J. I. Cirac, “Optimal creation of the entanglement using a two-qubit gate,” Phys. Rev., A63, 062309 (2000).

    Google Scholar 

  43. K. Kuiken, Heun’s equation and the hypergeometric equation, SIAM J. Math. Anal., 10 No. 3, 655–657 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  44. R. Lawrence, Homology representations of braid group, Ph.D. Thesis, Oxford Univ. (1989).

  45. A. Leibman, “Some monodromy representations of generalized braid groups,” Commun. Math. Phys., 164, 293–304 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  46. V. P. Leksin, “The Riemann-Hilbert problem for analytic families of representations,” Mat. Zametki, 50, No. 2, 89–97 (1991).

    MathSciNet  Google Scholar 

  47. R. Maier, Transforming the Heun equations to the hypergeometric equation, I: Polynomial transformations, ArXiv: math.CA/0203264.

  48. Y. Matiyasevich, Hilbert’s Tenth Problem, MIT Press, Cambridge, Massachussetts (1993).

    Google Scholar 

  49. H. Nakamura, Nonadiabatic transition: Concepts, Basic Theories and Applications, World Scientific, Singapore (2002).

    Google Scholar 

  50. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, New York (2000).

    MATH  Google Scholar 

  51. A. Niskanen, M. Nakahara, and M. Salomaa, Realization of arbitrary gates in holonomic quantum computation, ArXiv: quant-ph/0209015.

  52. H. Ochiai, T. Oshima, H. Sekiguchi, “Commuting families of symmetric differential operators,” Proc. Jpn. Acad., 70, 62–66 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  53. M. Okubo, On the Group of Fuchsian Equation, Seminar Notes, Tokyo Metropolitan University (1987).

  54. K. Okubo, K. Takano, and S. Yoshida, “A connection problem for the generalized hypergeometric equation,” Funkcial. Ekvac., 31, 483–495 (1988).

    MATH  MathSciNet  Google Scholar 

  55. M. Olshanetsky and A. Perelomov, “Quantum integrable systems related to Lie algebras,” Phys. Rep., 94, 313–404 (1983).

    Article  MathSciNet  Google Scholar 

  56. T. Oshima and H. Sekiguchi, “Commuting families of differential operators invariant under the action of a Weyl group,” J. Math. Sci. Univ. Tokyo, 2, 1–75 (1995).

    MATH  MathSciNet  Google Scholar 

  57. J. Pachos, P. Zanardi, M. Rasetti, Non-Abelian Berry connections for quantum computation, ArXiv: quant-ph/9907103.

  58. A. Ronveaux (ed.), Heun’s Differential Equations, Oxford Univ. Press, Oxford (1995).

    MATH  Google Scholar 

  59. T. Sasai, “On the monodromy group and irreducibility conditions of a fourth-order Fuchsian differential system of Okubo type,” J. Reine Angew. Math., 299/300, 38–50 (1978).

    MathSciNet  Google Scholar 

  60. T. Sasai and S. Tsuchiya, “On a fourth-order Fuchsian differential equation of Okubo type,” Funkcial. Ekvac., 34, 211–221 (1991).

    MATH  MathSciNet  Google Scholar 

  61. A. Shapere and F. Wilczek, eds., Geometric Phases in Physics, World Scientific (1987).

  62. R. Sovolay, “Lie groups and quantum circuits,” MSRI Conf. on Mathematics of Quantum Computation, Berkeley (2000).

  63. K. Takemura, “The Heun equation and the Calogero-Moser-Sutherland system, I: the Bethe Ansatz method,” Commun. Math. Phys., 235, 467–494 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  64. A. Tsuchiya and Y. Kanie, “Vertex operators in conformal field theory on CP1 and monodromy representations of braid group,” Adv. Stud. Pure Math., 16, 292–372 (1988).

    MathSciNet  Google Scholar 

  65. F. Wilczek and A. Zee, “Appearance of gauge structure in simple dynamical systems,” Phys. Rev. Lett., 52, 2111 (1984).

    Article  MathSciNet  Google Scholar 

  66. P. Zanardi and M. Rasetti, “Holonomic quantum computation,” Phys. Lett., A264, 94 (1999).

    MathSciNet  Google Scholar 

  67. T. Yakoyama, “On an irreducibility condition for hypergeometric systems,” Funkcial. Ekvac., 38, 11–19 (1995).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Giorgadze.

Additional information

__________

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 44, Quantum Computing, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giorgadze, G. Analytic methods in quantum computing. J Math Sci 153, 70–119 (2008). https://doi.org/10.1007/s10958-008-9121-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-9121-4

Keywords

Navigation