Skip to main content
Log in

A Survey of Methods Available for the Numerical Optimization of Continuous Dynamic Systems

  • INVITED PAPER
  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

There has been significant progress in the development of numerical methods for the determination of optimal trajectories for continuous dynamic systems, especially in the last 20 years. In the 1980s, the principal contribution was new methods for discretizing the continuous system and converting the optimization problem into a nonlinear programming problem. This has been a successful approach that has yielded optimal trajectories for very sophisticated problems. In the last 15–20 years, researchers have applied a qualitatively different approach, using evolutionary algorithms or metaheuristics, to solve similar parameter optimization problems. Evolutionary algorithms use the principle of “survival of the fittest” applied to a population of individuals representing candidate solutions for the optimal trajectories. Metaheuristics optimize by iteratively acting to improve candidate solutions, often using stochastic methods. In this paper, the advantages and disadvantages of these recently developed methods are described and an attempt is made to answer the question of what is now the best extant numerical solution method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryson, A.E., Ho, Y.-C.: Applied Optimal Control. Hemisphere, Washington (1975)

    Google Scholar 

  2. von Stryk, O., Glocker, M.: Numerical mixed-integer optimal control and motorized travelling salesmen problems. APII-JESA (Eur. J. Control-J. Eur. Syst. Autom.) 35, 519–533 (2001)

    Google Scholar 

  3. D’Amario, L., et al.: Galileo 1989 VEEGA trajectory design. J. Astronaut. Sci. 37, 281–306 (1989)

    Google Scholar 

  4. Kechichian, J.A.: Reformulation of Edelbaum’s low-thrust transfer problem using optimal control theory. J. Guid. Control Dyn. 20, 988–994 (1997)

    Article  MATH  Google Scholar 

  5. Kechichian, J.A.: Minimum-time constant acceleration orbit transfer with first-order oblateness effect. J. Guid. Control Dyn. 23, 595–603 (2000)

    Article  Google Scholar 

  6. Hargraves, C.R., Paris, S.W.: Direct trajectory optimization using nonlinear programming and collocation. J. Guid. Control Dyn. 10, 338–342 (1987)

    Article  MATH  Google Scholar 

  7. Enright, P.J., Conway, B.A.: Discrete approximations to optimal trajectories using direct transcription and nonlinear programming. J. Guid. Control Dyn. 15, 994–1002 (1992)

    Article  MATH  Google Scholar 

  8. Conway, B.A., Paris, S.W.: Spacecraft trajectory optimization using direct transcription and nonlinear programming. In: Conway, B.A. (ed.) Spacecraft Trajectory Optimization. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  9. Ross, I.M., Fahroo, F.: Legendre pseudospectral approximations of optimal control problems. In: Lecture Notes in Control and Information Sciences, vol. 295, pp. 327–342. Springer, New York (2003)

    Google Scholar 

  10. Fahroo, F., Ross, I.M.: Direct trajectory optimization by a Chebyshev pseudospectral method. J. Guid. Control Dyn. 25, 160–166 (2002)

    Article  Google Scholar 

  11. Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21, 193–207 (1998)

    Article  MATH  Google Scholar 

  12. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, New York (1989)

    MATH  Google Scholar 

  13. Engelbrecht, A.P.: Computational Intelligence, 2nd edn. Wiley, New York (2007)

    Book  Google Scholar 

  14. Hull, D.G.: Optimal Control Theory for Applications. Springer, New York (2003)

    MATH  Google Scholar 

  15. Lawden, D.F.: Optimal Trajectories for Space Navigation. Butterworth, London (1963)

    MATH  Google Scholar 

  16. Prussing, J.E.: Primer vector theory and applications. In: Conway, B.A. (ed.) Spacecraft Trajectory Optimization. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  17. Wood, L.J.: Second-order optimality conditions for the Bolza problem with both endpoints variable. J. Aircr. 11, 212–222 (1974)

    Article  Google Scholar 

  18. Jo, J.-W., Prussing, J.E.: Procedure for applying second-order conditions in optimal control problems. J. Guid. Control Dyn. 23, 241–251 (2000)

    Article  Google Scholar 

  19. Prussing, J.E., Sandrik, S.L.: Procedure for applying second-order conditions in optimal control problems. J. Guid. Control Dyn. 28, 812–816 (2005)

    Article  Google Scholar 

  20. Kelley, H.J., et al.: Singular extremals. In: Leitmann, G. (ed.) Topics in Optimization. Academic Press, San Diego (1967)

    Google Scholar 

  21. Goddard, R.H.: A Method of Reaching Extreme Altitudes, vol. 71 Smithsonian Inst. Press, New York (1919)

    Google Scholar 

  22. Tsien, H.S., Evans, R.C.: Optimum thrust programming for a sounding rocker. J. Am. Rocket Soc., 21, 99–107 (1951)

    Google Scholar 

  23. Breakwell, J.V., Redding, D.C.: Optimal low-thrust transfers to synchronous orbit. J. Guid. Control Dyn. 7, 148–155 (1984)

    Article  Google Scholar 

  24. Fox, L.: The Numerical Solution of Two-Point Boundary Problems. Oxford University Press, London (1968)

    Google Scholar 

  25. Keller, H.B.: Numerical Methods for Two-Point Boundary Value Problems. Blaisdell, New York (1968)

    MATH  Google Scholar 

  26. Miele, A.: Multiple subarc sequential gradient-restoration algorithm, Part 1: algorithm structure. J. Optim. Theory Appl. 116, 1–17 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guibout, V.M.: The Hamilton–Jacobi theory for solving two-point boundary value problems: theory and numerics with application to spacecraft formation flight, optimal control and the study of phase space structure, Ph.D. Thesis, University of Michigan (2004)

  28. Guibout, V.M., Scheeres, D.J.: Solving two-point boundary value problems using generating functions: theory and applications to astrodynamics. In: Gurfil, P. (ed.) Modern Astrodynamics, pp. 53–105. Elsevier, Amsterdam (2006)

    Google Scholar 

  29. Scheeres, D.J., Park, C., Guibout, V.: Solving optimal control problems with generating functions. Paper AAS 03-575 (2003)

  30. Canon, M.D., Cullum, C.D., Polak, E.: Theory of Optimal Control and Mathematical Programming. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  31. Dickmanns, E.D., Well, K.H.: Approximate solution of optimal control problems using third-order Hermite polynomial functions, In: Proceedings of the 6th Technical Conference on Optimization Techniques, IFIP-TC7. Springer, New York (1975)

    Google Scholar 

  32. Paris, S.W., Riehl, J.P., Sjauw, W.K.: Enhanced procedures for direct trajectory optimization using nonlinear programming and implicit integration. Paper AIAA-2006-6309, AIAA/AAS, Astrodynamics Specialist Conference and Exhibit, Keystone, Colorado (2006)

  33. Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd edn. SIAM, Philadelphia (2009)

    Google Scholar 

  34. Herman, A.L., Conway, B.A.: Direct optimization using collocation based on high-order Gauss–Lobatto quadrature rules. J. Guid. Control Dyn. 19, 592–599 (1996)

    Article  MATH  Google Scholar 

  35. Holmstrom, K., Goran, A.O., Edvall, M.M.: User’s guide for Tomlab 4.0.6. Tomlab Optimization, Sweden (2007)

  36. Ross, I.M.: User’s manual for DIDO: A MATLAB application package for solving optimal control problems. Tomlab Optimization, Sweden (2004)

  37. Betts, J.T., Huffman, W.P.: Sparse optimal control software SOCS, mathematics and engineering analysis. Technical document, MEA-LR-085, Boeing Information and Support Services, The Boeing Company, Seattle, WA (1997)

  38. Paris, S.: OTIS—Optimal trajectories by implicit simulation. User’s Manual, Boeing Aerospace Co. (1992)

  39. Well, K.H., Markl, A., Mehlem, K.: ALTOS—A trajectory analysis and optimization software for launch and reentry vehicles. International Astronautical Federation Paper IAF-97-V4.0 (1997)

  40. Martin, C.S.: A new numerical optimization method based on Taylor series for challenging trajectory optimization problems. Ph.D. thesis, University of Illinois at Urbana–Champaign (2011)

  41. Gill, P., Murray, W., Saunders, M.A.: SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Rev. 47, 99–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gill, P.E., et al.: User’s guide for NZOPT 1.0: A Fortran package for nonlinear programming. McDonnell Douglas Aerospace (1993)

  43. Kluever, C.A.: Low-thrust trajectory optimization using orbital averaging and control parameterization. In: Conway, B.A. (ed.) Spacecraft Trajectory Optimization. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  44. Herman, A.L.: Improved collocation methods with application to direct trajectory optimization. Ph.D. thesis, University of Illinois at Urbana–Champaign (1995)

  45. Enright, P.J.: Optimal finite-thrust spacecraft trajectories using direct transcription and nonlinear programming. Ph.D. thesis, University of Illinois at Urbana–Champaign (1991)

  46. Martin, C.S., Conway, B.A.: Optimal low-thrust trajectories to the Moon with manifolds. Paper AAS 10-105, AAS/AIAA, Space Flight Mechanics Meeting, San Diego, CA (2010)

  47. Ghosh, P., Conway, B.A.: A direct method for trajectory optimization using the particle swarm approach. Paper AAS 11-155, 21st AAS/AIAA, Spaceflight Mechanics Meeting, New Orleans (2011)

  48. Wall, B.J., Conway, B.A.: Near-optimal low-thrust Earth–Mars trajectories found via a genetic algorithm. J. Guid. Control Dyn. 28, 1027–1032 (2005)

    Article  Google Scholar 

  49. Wall, B.J.: Technology for the solution of hybrid optimal control problems in astronautics. Ph.D. thesis, University of Illinois at Urbana (2007)

  50. Vasile, M., Minisci, E., Locatelli, M.: An inflationary differential evolution algorithm for space trajectory optimization. IEEE Trans. Evol. Comput. 15, 267–281 (2011)

    Article  Google Scholar 

  51. Pinter, J.: Convergence properties of stochastic optimization procedures. Math. Oper.forsch. Stat., Ser. Optim. 15, 405–427 (1984)

    MathSciNet  MATH  Google Scholar 

  52. Rudolph, G.: Convergence of evolutionary algorithms in general search space. In: Proceedings of the IEEE International Conference on Evolutionary Computation. Nagoya, Japan (1996)

    Google Scholar 

  53. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kirkpatrick, S., Gelatt, C.D. Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kennedy, J., Eberhart, R.: Swarm Intelligence. Academic Press, San Diego (2001)

    Google Scholar 

  56. Vinkó, T., Izzo, D.: Global optimisation heuristics and test problems for preliminary spacecraft trajectory design. Technical report, European Space Agency, the Advanced Concepts Team, ACT (GOHTPPSTD), http://www.esa.int/gsp/ACT/doc/INF/pub/ACT-TNT-INF-2008-GOHTPPSTD.pdf (2008)

  57. Izzo, D.: Global optimization and space pruning for spacecraft trajectory design. In: Conway, B.A. (ed.) Spacecraft Trajectory Optimization. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  58. Englander, J., Conway, B.A.: Optimal autonomous mission planning via evolutionary algorithms. Paper AAS 11-159, 21st AAS/AIAA, Spaceflight Mechanics Meeting, New Orleans (2011)

  59. Hu, X., Eberhart, R.: Solving constrained nonlinear optimization problems with particle Swarm optimization. In: 6th World Multiconference on Systemics, Cybernetics and Informatics (2002)

    Google Scholar 

  60. Sedlaczek, K., Eberhard, P.: Using augmented Lagrangian particle swarm optimization for constrained problems in engineering. Struct. Multidiscip. Optim. 32, 277–286 (2006)

    Article  Google Scholar 

  61. Ramsay, J., Silverman, B.W.: Functional Data Analysis, 2nd edn. Springer, Berlin (2005)

    Google Scholar 

  62. de Boor, C.: A Practical Guide to Splines. Springer, New York (2001)

    MATH  Google Scholar 

  63. Chilan, C.M.: Automated design of multiphase space missions using hybrid optimal control. Ph.D. thesis, University of Illinois at Urbana (2009)

  64. Chilan, C., Conway, B.A.: A space mission automaton using hybrid optimal control. Paper AAS-07-115, AAS/AIAA, Spaceflight Mechanics Conference, Sedona AZ (2007)

  65. Bryson, A.E.: Dynamic Optimization, 1st edn. Pearson Education, Upper Saddle River (1998)

    Google Scholar 

  66. Lee, A.Y.: Solving constrained minimum-time robot problems using the sequential gradient restoration algorithm. Optim. Control Appl. Methods 13, 145–154 (1992)

    Article  MATH  Google Scholar 

  67. Ghosh, P., Conway, B.A.: Numerical trajectory optimization with Swarm intelligence. Submitted to the J. Guid. Control Dyn. (2011)

  68. Isaacs, R.: Differential Games. Wiley, New York (1965)

    MATH  Google Scholar 

  69. Horie, K.: Collocation with nonlinear programming for two-sided flight path optimization. Ph.D. thesis, University of Illinois at Urbana–Champaign (2002)

  70. Horie, K., Conway, B.A.: Optimal fighter pursuit-evasion maneuvers found via two-sided optimization. J. Guid. Control Dyn. 29, 105–112 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Conway.

Additional information

The example of homotopy shown in Fig. 4 is due to my graduate research assistant (now Ph.D. recipient) Christopher Martin.

The Lyapunov orbit generation example of Sect. 6.1 is due to my post-doctoral researcher Mauro Pontani.

The B727 min-time to climb and the robot arm repositioning example of Sect. 6.2 are due to my graduate research assistant (and Ph.D. candidate) Pradipto Ghosh.

The motorized travelling salesman example of Sect. 6.2 is due to my graduate research assistant (now Ph.D. recipient) Christian Chilan.

The homicidal chauffeur example of Sect. 6.3 is due to my graduate research assistant (now Ph.D. recipient) Kazuhiro Horie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conway, B.A. A Survey of Methods Available for the Numerical Optimization of Continuous Dynamic Systems. J Optim Theory Appl 152, 271–306 (2012). https://doi.org/10.1007/s10957-011-9918-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9918-z

Keywords

Navigation