Skip to main content
Log in

Moderate Deviations for the SSEP with a Slow Bond

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the one dimensional symmetric simple exclusion process with a slow bond. In this model, particles cross each bond at rate \(N^2\), except one particular bond, the slow bond, where the rate is N. Above, N is the scaling parameter. This model has been considered in the context of hydrodynamic limits, fluctuations and large deviations. We investigate moderate deviations from hydrodynamics and obtain a moderate deviation principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldasso, R., Menezes, O., Neumann, A., Souza, R.: Exclusion process with slow boundary. J. Stat. Phys. 167(5), 1112–1142 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  2. Borovkov, A.A.: Probabilities of large deviations in topological spaces. I. Sib. Math. J. 19, 697–709 (1978)

    Article  MathSciNet  Google Scholar 

  3. de Acosta, A., Chen, X.: Moderate deviations for empirical measures of Markov chains. J. Theor. Probab. 11, 1075–1110 (1998)

    Article  MathSciNet  Google Scholar 

  4. Dembo, A., Zeitouni, O.: Large Deviations: Techniques and Applications. Springer, Berlin (1997)

    MATH  Google Scholar 

  5. Dixmier, J.: General Topology (1984)

  6. Franco, T., Gonçalves, P., Neumann, A.: Hydrodynamical behavior of symmetric exclusion with slow bonds. Ann. l’IHP Probab. Stat. 49, 402–427 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Franco, T., Gonçalves, P., Neumann, A.: Phase transition in equilibrium fluctuations of symmetric slowed exclusion. Stoch. Process. Appl. 123(12), 4156–4185 (2013)

    Article  MathSciNet  Google Scholar 

  8. Franco, T., Gonçalves, P., Neumann, A.: Phase transition of a heat equation with Robin’s boundary conditions and exclusion process. Trans. Am. Math. Soc. 367(9), 6131–6158 (2015)

    Article  MathSciNet  Google Scholar 

  9. Franco, T., Gonçalves, P., Schütz, G.M.: Scaling limits for the exclusion process with a slow site. Stoch. Process. Appl. 126(3), 800–831 (2016)

    Article  MathSciNet  Google Scholar 

  10. Franco, T., Landim, C.: Hydrodynamic limit of gradient exclusion processes with conductances. Arch. Ration. Mech. Anal. 195, 409–439 (2009)

    Article  MathSciNet  Google Scholar 

  11. Franco, T., Neumann, A.: Large deviations for the exclusion process with a slow bond. Ann. Appl. Probab. 27(6), 3547–3587 (2017)

    Article  MathSciNet  Google Scholar 

  12. Franco, T., Tavares, M.: Hydrodynamic limit for the SSEP with a slow membrane. J. Stat. Phys. 175(2), 233–268 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  13. Gao, F.Q.: Moderate deviations for martingales and mixing random processes. Stoch. Process. Appl. 61, 263–275 (1996)

    Article  MathSciNet  Google Scholar 

  14. Gao, F.Q., Quastel, J.: Moderate deviations from the hydrodynamic limit of the symmetric exclusion process. Sci. China Ser. A 46(5), 577–592 (2003)

    Article  MathSciNet  Google Scholar 

  15. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems, vol. 320. Springer Science & Business Media, New York (2013)

    MATH  Google Scholar 

  16. Nikaidô, H.: On a minimax theorem and its applications to functional analysis. J. Math. Soc. Jpn. 5(1), 86–94 (1953)

    MathSciNet  MATH  Google Scholar 

  17. Schuppen, V.J., Wong, E.: Transformation of local martingales under a change of law. Ann. Probab. 2, 879–888 (1974)

    Article  MathSciNet  Google Scholar 

  18. Wang, F.Y., Xiong, J., Xu, L.H.: Asymptotics of sample entropy production rate for stochastic differential equations. J. Stat. Phys. 163, 1211–1234 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  19. Wang, R., Zhang, T.S.: Moderate deviations for stochastic reaction-diffusion equations with multiplicative noise. Potent. Anal. 42, 99–113 (2015)

    Article  MathSciNet  Google Scholar 

  20. Wu, L.: Moderate deviations of dependent random variables related to CLT. Ann. Probab. 23, 420–445 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Xue thanks the financial support from the National Natural Science Foundation of China with grant numbers 11501542. Zhao thanks the financial support from the ANR grant MICMOV (ANR-19-CE40-0012) of the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linjie Zhao.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 A.1: Lemma 1.1

Proof of Lemma 1.1

We use \(e_{-n}\) to denote \(-(2\pi n)^2\) for \(n\ge 0\) and use \(e_n\) to denote \(-k_n^2\) for \(n\ge 1\). Let

$$\begin{aligned} \widehat{\mathscr {G}}_0=\left\{ G\in C^2[0,1]:~G^\prime (0)=G^\prime (1)=G(0)-G(1)\right\} , \end{aligned}$$

then, as we will show at the end of this proof, \(\{e_n\}_{-\infty<n<+\infty }\) are all the eigenvalues of \(\tilde{\Delta }\) limited on \(\widehat{\mathscr {G}}_0\). Moreover, \(\theta _{-n}(x)=\cos \big (2n\pi x\big )\) is the eigenvector with respect to \(e_{-n}\) and \(\theta _n(x)=\sin \big (k_n(x-\frac{1}{2})\big )\) is the eigenvector with respect to \(e_n\).

According to the definition of the operator \(\frac{d}{dx}\frac{d}{dW}\) introduced in [10], when W(dx) equals to Lebesgue measure plus the Dirac measure at 1, it is easy to check that the domain \(\mathscr {D}_W\) of \(\frac{d}{dx}\frac{d}{dW}\) includes \(\widehat{\mathscr {G}}_0\) while \(\tilde{\Delta }\Big |_{\hat{\mathscr {G}}_0}=\frac{d}{dx}\frac{d}{dW}\Big |_{\hat{\mathscr {G}}_0}\). By [10, Theorem 1], all the eigenvalues of \(\frac{d}{dx}\frac{d}{dW}\) form an orthogonal basis of \(L^2[0,1]\). As a result, to complete this proof, we only need to check the following two claims,

  1. 1.

    \(\{e_n\}_{-\infty<n<+\infty }\) are all the eigenvalues of \(\tilde{\Delta }\) limited on \(\widehat{\mathscr {G}}_0\);

  2. 2.

    if f is an eigenvector of \(\frac{d}{dx}\frac{d}{dW}\), then \(f\in \hat{\mathscr {G}}_0\).

For the first claim, it is obviously that \(G\equiv 1\) is the eigenvector of \(\tilde{\Delta }\Big |_{\hat{\mathscr {G}}_0}\) with respect to \(e_0=0\). So, from now on, we assume that \(\lambda \ne 0\) is an eigenvalue of \(\tilde{\Delta }\Big |_{\hat{\mathscr {G}}_0}\) while \(G\ne 0\) is an eigenvector of \(\tilde{\Delta }\Big |_{\hat{\mathscr {G}}_0}\) with respect to \(\lambda \). We further let \(H(x)=G(x+\frac{1}{2})\) for \(-\frac{1}{2}\le x\le \frac{1}{2}\). If \(\lambda >0\), let \(c=\sqrt{\lambda }\), then, since \(\tilde{\Delta }G=\lambda G\) and \(G\in \hat{\mathscr {G}_0}\),

$$\begin{aligned} H(x)=a_1e^{cx}+a_2e^{-cx} \end{aligned}$$

for some \(a_1, a_2\in \mathbb {R}\) while \(H^{\prime }\left( \frac{1}{2}\right) =H^{\prime }\left( -\frac{1}{2}\right) =H\left( -\frac{1}{2}\right) -H\left( \frac{1}{2}\right) \). Therefore, \(-a_2=a_1=a\) for some \(a\in \mathbb {R}\) while

$$\begin{aligned} ac(e^{\frac{c}{2}}+e^{-\frac{c}{2}})=2a(e^{-\frac{c}{2}}-e^{\frac{c}{2}}). \end{aligned}$$

If \(a\ne 0\), then

$$\begin{aligned} 0<c(e^{\frac{c}{2}}+e^{-\frac{c}{2}})=2(e^{-\frac{c}{2}}-e^{\frac{c}{2}})<0 \end{aligned}$$

since \(c>0\), which is contradictory. Hence, we have \(a=0\) and \(G=0\), which is also contradictory. Therefore, \(\lambda <0\). Let \(c=\sqrt{-\lambda }\), then

$$\begin{aligned} H(x)=a_1\sin (cx)+a_2\cos (cx) \end{aligned}$$

for some \(a_1, a_2\in \mathbb {R}\) while \(H^{\prime }\left( \frac{1}{2}\right) =H^{\prime }\left( -\frac{1}{2}\right) =H\left( -\frac{1}{2}\right) -H\left( \frac{1}{2}\right) \). Therefore,

$$\begin{aligned} ca_2\sin \left( \frac{c}{2}\right) =0 \text {~and~} ca_1\cos \left( \frac{c}{2}\right) =-2a_1\sin \left( \frac{c}{2}\right) . \end{aligned}$$

As a result, if \(a_2=0\), then \(a_1\ne 0\) while c is a root of the equation \(-\frac{x}{2}=\tan \frac{x}{2}\). Else if \(a_2\ne 0\), then \(\sin \left( \frac{c}{2}\right) =0\) and hence \(c=2n\pi \) for some integer \(n\ge 1\). Consequently, \(\lambda =-(2n\pi )^2\) or \(-k_n^2\) for some integer \(n\ge 1\).

For the second claim, if \(f\in \mathscr {D}_W\) is an eigenvector of \(\frac{d}{dx}\frac{d}{dW}\), then there exist \(a, b, \lambda \in \mathbb {R}\) while \(\mathfrak {f}\in L^2[0, 1)\) such that

$$\begin{aligned} \int _0^1\mathfrak {f}(z)dz=0, \text {~}\int _{(0, 1]}W(dy)\left( b+\int _0^y\mathfrak {f}(z)dz\right) =0 \end{aligned}$$

while

$$\begin{aligned} f(x)=a+bW(x)+\int _{(0,x]}W(dy)\int _0^y\mathfrak {f}(z)dz \end{aligned}$$

for \(0\le x<1\) and \(\frac{d}{dx}\frac{d}{dW}f=\mathfrak {f}=\lambda f\), where

$$\begin{aligned} W(x)= {\left\{ \begin{array}{ll} x &{} \text {~if~}0\le x<1,\\ 2 &{} \text {~if~}x=1. \end{array}\right. } \end{aligned}$$

Hence, \(f(x)=a+bx+\int _0^x\left( \int _0^y \mathfrak {f}(x)dz\right) dy\) for \(0\le x<1\). Supplementarily define

$$\begin{aligned} f(1)=f(1-)=\lim _{x\uparrow 1}f(x)=a+b+\int _0^1\left( \int _0^y \mathfrak {f}(x)dz\right) dy, \end{aligned}$$

then \(f\in C[0, 1]\) with \(f(0)=a\) and \(f(1)=a-b\) since

$$\begin{aligned} \int _0^1\left( \int _0^y \mathfrak {f}(x)dz\right) dy&=\int _{(0, 1]}W(dy)\left( b+\int _0^y\mathfrak {f}(z)dz\right) -2b-\int _0^1 \mathfrak {f}(y)dy=-2b. \end{aligned}$$

Since \(f(x)=a+bx+\int _0^x\left( \int _0^y \mathfrak {f}(x)dz\right) dy\) for \(0\le x\le 1\),

$$\begin{aligned} f^\prime (x)=b+\int _0^x\mathfrak {f}(y) dy \end{aligned}$$

for \(0\le x\le 1\). Therefore, \(f\in C^1[0, 1]\) with \(f^\prime (0)=b\) and \(f^\prime (1)=b\) since

$$\begin{aligned} \int _0^1\mathfrak {f}(z)dz=0. \end{aligned}$$

As a result,

$$\begin{aligned} f^\prime (0)=f^\prime (1)=f(0)-f(1). \end{aligned}$$
(4.12)

Since \(\mathfrak {f}=\lambda f\) in \(L^2[0, 1)\) while \(f\in C[0, 1]\) as we have shown above, we can choose a continuous version of \(\mathfrak {f}\) and supplementarily define \(\mathfrak {f}(1)=\lambda f(1)\) such that \(\mathfrak {f}\in C[0, 1]\). Since \(\mathfrak {f}\in C[0, 1]\) and \(f^\prime (x)=b+\int _0^x\mathfrak {f}(y) dy\) for \(0\le x\le 1\),

$$\begin{aligned} f^{\prime \prime }(x)=\mathfrak {f}(x)=\lambda f(x) \end{aligned}$$

for \(0\le x\le 1\) and hence \(f^{\prime \prime }\in C[0, 1]\), implying \(f\in C^2[0, 1]\). Consequently, by Eq. (4.12), \(f\in \hat{\mathscr {G}}_0\). This completes the proof. \(\square \)

1.2 A.2: Existence and Uniqueness of Solution to Eq. (4.3)

Proof of the existence

We directly construct a solution to Eq. (4.3). For \(-\infty<n<+\infty \), let \(\{x_t^n\}_{0\le t\le T}\) be the unique solution to the ODE

$$\begin{aligned} {\left\{ \begin{array}{ll} &{}\frac{d}{dt}x_t^n=e_nx_t^n+\langle \theta _n|G_t\rangle ,\\ &{}x_0^n=\int _0^1\phi (x)\theta _n(x)dx, \end{array}\right. } \end{aligned}$$

where \(e_n\) is defined as in the proof of Lemma 1.1. That is to say,

$$\begin{aligned} x_t^n=e^{e_nt}\int _0^1 \phi (x)\theta _n(x)dx+\int _0^te^{e_n(t-s)}\langle \theta _n|G_s\rangle ds. \end{aligned}$$

For any \(f=\sum _{-\infty<n<+\infty }C_n(f)\theta _n\in \mathscr {G}_0\) and \(t\ge 0\), we define

$$\begin{aligned} \mu _t^G(f)=\sum _{-\infty<n<+\infty }C_n(f)x_t^n. \end{aligned}$$

Note that the coefficients \(\{C_n(f)\}_{-\infty<n<+\infty }\) are unique according to Lemma 1.1 and hence the definition of \(\mu ^G\) is reasonable. Since

$$\begin{aligned} \mu _t^G(\theta _n)=x_t^n \quad \text {and} \quad \mu _t^G(\tilde{\Delta }\theta _n)=\mu _t^G(e_n\theta _n)=e_nx_t^n, \end{aligned}$$

it is easy to check that \(\mu ^G\) is the solution to Eq. (4.3). \(\square \)

Proof of the Uniqueness

Assuming that \(\mu \) and \(\nu \) are both solutions to Eq. (4.3), then

$$\begin{aligned} |\mu _t(\theta _n)-\nu _t(\theta _n)|\le |e_n|\int _0^t |\mu _s(\theta _n)-\nu _s(\theta _n)|ds. \end{aligned}$$

By Grownwall’s inequality,

$$\begin{aligned} |\mu _t(\theta _n)-\nu _t(\theta _n)|\le 0e^{|e_n|t}=0 \end{aligned}$$

for any \(0\le t\le T\) and \(n\ge 1\). Hence, \(\mu =\nu \) and the proof is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, X., Zhao, L. Moderate Deviations for the SSEP with a Slow Bond. J Stat Phys 182, 48 (2021). https://doi.org/10.1007/s10955-021-02732-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02732-2

Keywords

Navigation