Skip to main content
Log in

Infinite Level GREM-Like K-Processes Existence and Convergence

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We derive the existence of infinite level GREM-like K-processes by taking the limit of a sequence of finite level versions of such processes as the number of levels diverges. The main step in the derivation is obtaining the convergence of the sequence of underlying finite level clock processes. This is accomplished by perturbing these processes so as to turn them into martingales, and resorting to martingale convergence to obtain convergence for the perturbed clock processes; nontriviality of the limit requires a specific choice of parameters of the original process; we conclude the step by showing that the perturbation washes away in the limit. The perturbation is done by inserting suitable factors into the expression of the clocks, as well as rescaling the resulting expression suitably; the existence of such factors is itself established through martingale convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. This is one of the phenomenological models alluded to above.

  2. As pointed out in earlier papers, \(\infty \)’s have also a physical meaning: they represent the high energy configurations lumped together.

  3. Under the resulting dynamics, the levels for which \(\Xi _k=\) id would however not be at low temperature, and their corresponding coordinates would be equal \(\infty \) at all times, the remaining coordinates undergoing an ordinary GK-process.

  4. As in [7, 24].

References

  1. Barlow, M.T., Černý, J.: Convergence to fractional kinetics for random walks associated with unbounded conductances. Probab. Theory Relat. Fields 149, 639–673 (2011)

    Article  MathSciNet  Google Scholar 

  2. Barreto-Souza, W., Fontes, L.R.G.: Long-range trap models on \({\mathbb{Z}}\) and quasistable processes. J. Theor. Probab. 28, 1500–1519 (2015)

    Article  MathSciNet  Google Scholar 

  3. Ben Arous, G., Černý, J.: Scaling limit for trap models on \({{\mathbb{Z}}}^d\). Ann. Probab. 35, 2356–2384 (2007)

    Article  MathSciNet  Google Scholar 

  4. Ben Arous, G., Bovier, A., Černý, J.: Universality of the REM for dynamics of mean-field spin glasses. Commun. Math. Phys. 282, 663–695 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  5. Ben Arous, G., Černý, J., Mountford, T.: Aging in two-dimensional Bouchaud’s model. Probab. Theory Relat. Fields 134, 1–43 (2006)

    Article  MathSciNet  Google Scholar 

  6. Ben Arous, G., Bovier, A., Gayrard, V.: Glauber dynamics of the random energy model. II. Aging below the critical temperature. Commun. Math. Phys. 236(1), 1–54 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  7. Bezerra, S.C., Fontes, L.R.G., Gava, R.J., Gayrard, V., Mathieu, P.: Scaling limits and aging for asymmetric trap models on the complete graph and K processes. ALEA Lat. Am. J. Probab. Math. Stat. 9, 303–321 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Bouchaud, J.-P., Dean, D.S.: Aging on Parisi’s tree. J. Phys. I France 5, 265–286 (1995)

    Article  Google Scholar 

  9. Bovier, A., Gayrard, V.: Convergence of clock processes in random environments and ageing in the p-spin SK model. Ann. Probab. 41, 817–847 (2013)

    Article  MathSciNet  Google Scholar 

  10. Bovier, A., Kurkova, I.: Derrida’s Generalised Random Energy models I. Models with finitely many hierarchies. Ann. I. H. Poincaré - PR 40, 439–480 (2004)

    Article  MathSciNet  Google Scholar 

  11. Bovier, A., Kurkova, I.: Derrida’s Generalised Random Energy models I. Models with continuous hierarchies. Ann. I. H. Poincaré - PR 40, 481–495 (2004)

    Article  Google Scholar 

  12. Bovier, A., Kurkova, I.: Much ado about Derrida’s GREM. In: Spin Glasses, Lecture Notes in Math., vol. 1900, pp. 81–115. Springer (2007)

  13. Černý, J., Wassmer, T.: Aging of the metropolis dynamics on the random energy model. Probab. Theory Relat. Fields 167, 253–303 (2017)

    Article  MathSciNet  Google Scholar 

  14. Cortines, A., Gold, J., Louidor, O.: Dynamical freezing in a spin glass system with logarithmic correlations. Electron. J. Probab. 23, 59 (2018)

    Article  MathSciNet  Google Scholar 

  15. Derrida, B.: A generalization of the random energy model which includes correlations between energies. J. Phys. Lett. 46, L401–L407 (1985)

    Article  ADS  Google Scholar 

  16. Derrida, B.: Random-energy model: limit of a family of disordered models. Phys. Rev. Lett. 45, 79–82 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  17. Enriquez, N., Sabot, C., Zindy, O.: Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime. Bull. Soc. Math. France 137, 423–452 (2009)

    Article  MathSciNet  Google Scholar 

  18. Ethier, S.N., Kurtz, T.G.: Markov Processes. Characterization and Convergence. Wiley, New York (1986)

    Book  Google Scholar 

  19. Fontes, L.R.G., Isopi, M., Newman, C.M.: Random walks with strongly inhomogeneous rates and singular diffusions: convergence, localization and aging in one dimension. Ann. Probab. 30, 579–604 (2002)

    Article  MathSciNet  Google Scholar 

  20. Fontes, L..R..G., Isopi, M., Newman, C..M., Stein, D.: Aging in 1\({}{D}\) discrete spin models and equivalent systems. Phys. Rev. Lett. 87(11), 110201-1-110201–4 (2002)

    Google Scholar 

  21. Fontes, L.R.G., Gava, R.J., Gayrard, V.: The K-process on a tree as a scaling limit of the GREM-like trap model. Ann. Appl. Probab. 24, 857–897 (2014)

    Article  MathSciNet  Google Scholar 

  22. Fontes, L.R.G., Gayrard, V.: Asymptotic behavior and aging of a low temperature cascading 2-GREM dynamics at extreme time scales. Electron. J. Probab. 24, 142 (2019)

    Article  MathSciNet  Google Scholar 

  23. Fontes, L.R.G., Lima, P.H.S.: Convergence of symmetric trap modelsin the hypercube. In: Sidoravičius, V. (ed.) New Trends in Mathematical Physics, pp. 285–297. Springer, Dordrecht (2009)

    Chapter  Google Scholar 

  24. Fontes, L.R.G., Mathieu, P.: K-processes, scaling limit and aging for the trap model on the complete graph. Ann. Probab. 36, 1322–1358 (2008)

    Article  MathSciNet  Google Scholar 

  25. Fontes, L.R.G., Mathieu, P.: On the dynamics of trap models in \({{\mathbb{Z}}}^d\). Proc. Lond. Math. Soc. 108, 1562–1592 (2014)

    Article  MathSciNet  Google Scholar 

  26. Fontes, L.R.G., Peixoto, G.R.C.: Elementary results on K processes with weights. Markov Process. Relat. Fields 19, 343–370 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Gava, R.J.: Scaling limits of trap models on a tree. Ph.D. thesis; University of São Paulo (in portuguese) (2011)

  28. Gayrard, V.: Aging in metropolis dynamics of the REM: a proof. Probab. Theory Relat. Fields 174, 501–551 (2019)

    Article  MathSciNet  Google Scholar 

  29. Gayrard, V., Gün, O.: Aging in the GREM-like trap model. Markov Process. Relat. Fields 22, 165–202 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Gayrard, V., Švejda, A.: Convergence of clock processes on infinite graphs and aging in Bouchaud’s asymmetric trap model on \({{\mathbb{Z}}}^d\). ALEA Lat. Am. J. Probab. Math. Stat. 11, 781–822 (2014)

    MATH  Google Scholar 

  31. Jara, M., Landim, C., Teixeira, A.: Quenched scaling limits of trap models. Ann. Probab. 39, 176–223 (2011)

    Article  MathSciNet  Google Scholar 

  32. Jara, M., Landim, C., Teixeira, A.: Universality of trap models in the ergodic time scale. Ann. Probab. 42, 2497–2557 (2014)

    Article  MathSciNet  Google Scholar 

  33. Kingman, J.F.C.: Poisson Processes. Clarendon, Oxford (1993)

    MATH  Google Scholar 

  34. Laue, G.: Remarks on the relation between fractional moments and fractional derivatives of characteristic functions. J. Appl. Probab. 17, 456–466 (1980)

    Article  MathSciNet  Google Scholar 

  35. Mathieu, P., Mourrat, J.-C.: Aging of asymmetric dynamics on the random energy model. Probab. Theory Relat. Fields 161, 351–427 (2015)

    Article  MathSciNet  Google Scholar 

  36. Ruelle, D.: A mathematical reformulation of Derrida’s REM and GREM. Commun. Math. Phys. 108, 225–239 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  37. Samorodnitsky, G., Taqqu, M.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman and Hall, New York (1994)

    MATH  Google Scholar 

  38. Sasaki, M., Nemoto, K.: Analysis on aging in the generalized random energy model. J. Phys. Soc. Jpn. 69, 3045–3050 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank NUMEC-USP for the hospitality shown to the second author during the development of this work, and also two anonymous referees, whose thoughtful comments and criticism much helped improve the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Renato Fontes.

Additional information

Communicated by Aernout van Enter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

L. R. Fontes: Partially supported by CNPq grant 307884/2019-8, and FAPESP grant 2017/10555-0. G. R. C. Peixoto: Supported by CNPq fellowship 140177/2012-4 and a CAPES institutional fellowship.

Appendices

Martingality Inducing Factors—Proofs

Proof of Proposition 2.1

Without loss of generality, let us assume \(k = 0\), and define the following random variables. For \(n > 0\) and \(\lambda > 0\), let

$$\begin{aligned} Z_n(\lambda ) := \exp \left\{ - \sum _{y|_n} \left( \lambda \hat{\gamma }_n(y|_n) \right) ^{\alpha _{n+1}} \right\} . \end{aligned}$$

Let us show that these random variables form a martingale with respect to the filtration \(({\mathcal {D}}_n)\), where \({\mathcal {D}}_n\) is the \(\sigma \)-algebra generated by \(\{{\tilde{\gamma }}_j(x|_j): x|_j \in {\mathbb {N}}^j, \,j \le n \}\). Let us at this point note that it readily follows from Proposition B.2 below that

$$\begin{aligned} {\tilde{\gamma }}_k(x|_{k-1}):=\left\{ {\tilde{\gamma }}_k(x|_{k-1},x): x \in {\mathbb {N}}\right\} \end{aligned}$$
(A.1)

is a Poisson point process, with intensity measure \({\tilde{\mu }}(dt) := \frac{c^*_k}{t^{1+\alpha _k}}\,dt, t > 0\).

We may thus use Campbell’s Theorem (see e.g. [33], Section 3.2) in the following:

$$\begin{aligned} {\mathbb {E}}\left( Z_{n+1}(\lambda ) \Big | {\mathcal {D}}_{n} \right)&= {\mathbb {E}}\left[ \exp \left\{ - \sum _{y|_{n+1}} \left( \lambda \hat{\gamma }_{n+1}(y|_{n+1}) \right) ^{\alpha _{n+2}} \right\} \Big |{\mathcal {D}}_{n} \right] \nonumber \\&= \prod _{y|_n} {\mathbb {E}}\left[ \exp \left\{ - \left( \lambda \hat{\gamma }_{n}(y|_{n})\right) ^{\alpha _{n+2}} \sum _{y_{n+1}} {\tilde{\gamma }}_{n+1}(y|_{n+1}) ^{\alpha _{n+2}} \right\} \Big | {\mathcal {D}}_{n} \right] \nonumber \\&= \prod _{y|_n} \exp \left\{ - \int _0^\infty (1 - \exp \left( - \left( \lambda \hat{\gamma }_{n}(y|_{n})\right) ^{\alpha _{n+2}} t^{\alpha _{n+2}}\right) ) {\tilde{\mu }}_{n+1}(d t) \right\} \nonumber \\&= \prod _{y|_n} \exp \left\{ - \left( \lambda \hat{\gamma }_{n}(y|_{n})\right) ^{\alpha _{n+1}} \right\} = \exp \left\{ - \sum _{y|_n}\left( \lambda \hat{\gamma }_{n}(y|_{n})\right) ^{\alpha _{n+1}} \right\} \nonumber \\&= Z_n(\lambda ). \end{aligned}$$
(A.2)

Since \((Z_n(1))\) is a positive martingale, it converges a.s.; thus, its exponent must converge as well.

The second claim can be obtained by using (A.2) to explicitly compute:

$$\begin{aligned} {\mathbb {E}}\left[ \exp \left\{ - \lambda \sum _{y|_n} \hat{\gamma }_n(y|_n)^{\alpha _{n+1}} \right\} \right]&= {\mathbb {E}}\left[ Z_n(\lambda ^{1/\alpha _{n+1}}) \right] \nonumber \\&= {\mathbb {E}}\left[ Z_1(\lambda ^{1/\alpha _{n+1}}) \right] \nonumber \\&= \exp \{ -\lambda ^{\alpha _{1}/\alpha _{n+1}}\} \xrightarrow {n \rightarrow \infty } \exp \{-\lambda ^{\alpha _{1}}\}, \end{aligned}$$
(A.3)

since \(\alpha _n\rightarrow 1\) as \(n\rightarrow \infty \), where the latter equality follows from Campbell’s Theorem, once we note that \(\{[{\tilde{\gamma }}_1(x|_1)]^{\alpha _2},\,x|_1\in {\mathbb {N}}\}\) is a Poisson point process with intensity measure \(\mu ^*_1(dt)=(c^*_1/\alpha _2)/t^{1+\alpha _1/\alpha _2}\,dt\).

To establish the final claim, let us fix a realization such that (2.2) holds for every \(x|_k \in {\mathbb {N}}^k\), \(k\ge 0\), and fix an arbitrary \(\epsilon > 0\), then:

$$\begin{aligned} W_k(x|_k)&= \lim _{n \rightarrow \infty } \sum _{y_n \in [x|_k]_n} \left( \frac{\hat{\gamma }_n(y|_n)}{\hat{\gamma }_k(x|_k)} \right) ^{\alpha _{n+1}}\nonumber \\&= \lim _{n \rightarrow \infty } \sum _{x_{k+1}} ({\tilde{\gamma }}_{k+1}(x|_{k+1}))^{\alpha _{n+1}} \sum _{y_n \in [x|_{k+1}]_n} \left( \frac{\hat{\gamma }_n(y|_n)}{\hat{\gamma }_{k+1}(x|_{k+1})} \right) ^{\alpha _{n+1}}\nonumber \\&= \lim _{n \rightarrow \infty } \sum _{\begin{array}{c} x_{k+1}:\\ {\tilde{\gamma }}_{k+1}(x|_{k+1}) > \epsilon \end{array}} ({\tilde{\gamma }}_{k+1}(x|_{k+1}))^{\alpha _{n+1}} \sum _{y_n \in [x|_{k+1}]_n} \left( \frac{\hat{\gamma }_n(y|_n)}{\hat{\gamma }_{k+1}(x|_{k+1})} \right) ^{\alpha _{n+1}} \end{aligned}$$
(A.4)
$$\begin{aligned}&\quad + \lim _{n \rightarrow \infty } \sum _{\begin{array}{c} x_{k+1}:\\ {\tilde{\gamma }}_{k+1}(x|_{k+1}) \le \epsilon \end{array}} ({\tilde{\gamma }}_{k+1}(x|_{k+1}))^{\alpha _{n+1}} \sum _{y_n \in [x|_{k+1}]_n} \left( \frac{\hat{\gamma }_n(y|_n)}{\hat{\gamma }_{k+1}(x|_{k+1})} \right) ^{\alpha _{n+1}}. \end{aligned}$$
(A.5)

Let us treat these two terms separately, and show that their respective limits exist in probability. For (A.4), since the outermost sum is finite and \(\alpha _n \rightarrow 1\) as \(n \rightarrow \infty \), we have that

$$\begin{aligned} {}(\hbox {A}.4)&= \sum _{\begin{array}{c} x_{k+1}:\\ {\tilde{\gamma }}_{k+1}(x|_{k+1})> \epsilon \end{array}} {\tilde{\gamma }}_{k+1}(x|_{k+1}) \lim _{n \rightarrow \infty } \sum _{y_n \in [x|_{k+1}]_n} \left( \frac{\hat{\gamma }_n(y|_n)}{\hat{\gamma }_k(x|_{k+1})} \right) ^{\alpha _{n+1}}\\&= \sum _{\begin{array}{c} x_{k+1}:\\ {\tilde{\gamma }}_{k+1}(x|_{k+1}) > \epsilon \end{array}} {\tilde{\gamma }}_{k+1}(x|_{k+1}) W_{k+1}(x|_{k+1}) \xrightarrow {\epsilon \rightarrow 0} \sum _{x_{k+1}} {\tilde{\gamma }}_{k+1}(x|_{k+1}) W_{k+1}(x|_{k+1}). \end{aligned}$$

Let \({\mathcal {D}}'_k={\mathcal {D}}'_k(x|_k)\) be the \(\sigma \)-algebra generated by

\(\{{\tilde{\gamma }}_{k+1}(x|_{k+1}) : x_{k+1} \in {\mathbb {N}}\}\). Using (A.3), we can compute the Laplace transform of (A.5) as:

$$\begin{aligned}&{\mathbb {E}}\left[ \exp \left\{ - \lambda \sum _{\begin{array}{c} x_{k+1}:\\ {\tilde{\gamma }}_{k+1}(x|_{k+1}) \le \epsilon \end{array}} ({\tilde{\gamma }}_{k+1}(x|_{k+1}))^{\alpha _{n+1}} \sum _{y_n \in [x|_{k+1}]_n} \left( \frac{\hat{\gamma }_n(y|_n)}{\hat{\gamma }_{k+1}(x|_{k+1})} \right) ^{\alpha _{n+1}} \right\} \right] \\&\quad =\, {\mathbb {E}}\left[ \prod _{\begin{array}{c} x_{k+1}:\\ {\tilde{\gamma }}_{k+1}(x|_{k+1}) \le \epsilon \end{array}} {\mathbb {E}}\left[ \exp \left\{ - \lambda ({\tilde{\gamma }}_{k+1}(x|_{k+1}))^{\alpha _{n+1}}\right. \right. \right. \\&\qquad \left. \left. \left. \sum _{y_n \in [x|_{k+1}]_n} \left( \frac{\hat{\gamma }_n(y|_n)}{\hat{\gamma }_{k+1}(x|_{k+1})} \right) ^{\alpha _{n+1}} \right\} \Big | {\mathcal {D}}'_k \right] \right] \\&\quad =\, {\mathbb {E}}\left[ \prod _{\begin{array}{c} x_{k+1}:\\ {\tilde{\gamma }}_{k+1}(x|_{k+1}) \le \epsilon \end{array}} \exp \left\{ - \left( \lambda ({\tilde{\gamma }}_{k+1}(x|_{k+1}))^{\alpha _{n+1}} \right) ^{\frac{\alpha _{k+2}}{\alpha _{n+1}}} \right\} \right] \xrightarrow {n \rightarrow \infty }\\&{\mathbb {E}}\left[ \exp \left\{ - \lambda ^{\alpha _{k+2}} \!\!\!\!\!\!\!\sum _{\begin{array}{c} x_{k+1}:\\ {\tilde{\gamma }}_{k+1}(x|_{k+1}) \le \epsilon \end{array}}\!\!\!\!\!\!\! ({\tilde{\gamma }}_{k+1}(x|_{k+1}))^{\alpha _{k+2}} \right\} \right] \!= \exp \left\{ \!-\! \int _0^\epsilon \left( 1 - e^{-{(\lambda x)}^{\alpha _{k+2}}} \right) {\tilde{\mu }}_{k+1}(d x) \right\} \\&\quad \xrightarrow {\epsilon \rightarrow 0} 1. \end{aligned}$$

We used Campbell’s Theorem in the last equality. With this we can conclude that the expression in (A.5) converges in probability to 0 as \(\epsilon \rightarrow 0\).

Finally, note that we have shown that (A.4) \(+\) (A.5) converges in probability to both \(W_{k}(x|_k)\) and \(\sum _{x_{k+1}} {\tilde{\gamma }}_{k+1}(x|_{k+1}) W_{k+1}(x|_{k+1})\) as \(\epsilon \rightarrow 0\), which implies that these latter two quantities are almost surely equal. \(\square \)

Proof of Corollary 3.1

Let \(A_n := \{ x|_n \in {\mathbb {N}}^n: \hat{\gamma }_n(x|_n) > 1 \}\) and \(m_n := \max \{ \hat{\gamma }_n(x|_n): x|_n \in {\mathbb {N}}^n\}\). Using Proposition 2.1, we get that almost surely

$$\begin{aligned} W_0(\emptyset )&= \lim _{n \rightarrow \infty } \sum _{x|_n \in {\mathbb {N}}^n} \left( \hat{\gamma }_n(x|_n) \right) ^{\alpha _{n+1}} \ge \limsup _{n \rightarrow \infty } \sum _{x|_n \in A_n} \left( \hat{\gamma }_n(x|_n) \right) ^{\alpha _{n+1}} \ge \limsup _{n \rightarrow \infty } |A_n|;\\ W_0(\emptyset )&= \lim _{n \rightarrow \infty } \sum _{x|_n \in {\mathbb {N}}^n} \left( \hat{\gamma }_n(x|_n) \right) ^{\alpha _{n+1}} \ge \limsup _{n \rightarrow \infty } \left( m_n \right) ^{\alpha _{n+1}} = \limsup _{n \rightarrow \infty } m_n. \end{aligned}$$

Since \(W_0(\emptyset ) < \infty \), we have that \(\limsup _n |A_n| < \infty \) and \(\limsup _n m_n < \infty \) a.s. Thus,

$$\begin{aligned} \sum _{x|_n} \hat{\gamma }_n(x|_n) = \sum _{x|_n \in A_n} \hat{\gamma }_n(x|_n) + \sum _{x|_n\ \not \in A_n} \hat{\gamma }_n(x|_n) \le m_n |A_n| + \sum _{x|_n\ \not \in A_n} \left( \hat{\gamma }_n(x|_n) \right) ^{\alpha _{n+1}}. \end{aligned}$$

From the previous remark, the limsup of the first term of this last sum is bounded a.s. by \(W^2_0(\emptyset )\), while the \(\limsup \) of the second term is bounded by \(W_0(\emptyset )\). \(\square \)

Proof of Lemma 3.2

Recall from Proposition 2.1 that \(W_k(x|_k)\) has a stable distribution, which may be denoted, in the notation of [37, Sections 1.1. and 1.2], as follows: \(W_k(x|_k)\sim S_{\alpha _{k+1}}(\sigma ,0,1)\), with \(\sigma ^{\alpha _{k+1}}= \cos \left( \frac{\pi \alpha _{k+1} }{2}\right) \). We may thus write the characteristic function of \(W_k(x|_k) - 1\) as follows:

$$\begin{aligned} \varphi _k (u)&:= {\mathbb {E}}\left[ e^{i u (W(x|_k) - 1)} \right] \nonumber \\&= \exp \left\{ - |u|^{\alpha _{k+1}} \left[ \cos \left( \frac{\pi \alpha _{k+1}}{2} \right) -i {{\,\mathrm{sgn}\,}}(u) \sin \left( \frac{\pi \alpha _{k+1}}{2} \right) \right] - i u \right\} \nonumber \\&= \exp \left\{ - |u|^{\alpha _{k+1}} \cos \left( \frac{\pi \alpha _{k+1}}{2} \right) -i \left[ u - |u|^{\alpha _{k+1}} {{\,\mathrm{sgn}\,}}(u) \sin \left( \frac{\pi \alpha _{k+1}}{2} \right) \right] \right\} . \end{aligned}$$
(A.6)

Theorem 2.2 from [34] states that

$$\begin{aligned} {\mathbb {E}}\left[ \left| W(x|_k) - 1 \right| ^{\alpha _k} \right]&= \frac{1}{\cos \left( \frac{\pi \alpha _k}{2} \right) } {{\,\mathrm{Re}\,}}\left[ \frac{\alpha _k}{\Gamma (1-\alpha _k)} \int _0^\infty \frac{1 - \varphi _k(-u)}{u^{1+\alpha _k}} d u \right] . \end{aligned}$$

Note that \( \frac{\alpha _k}{\cos \left( \frac{\pi \alpha _k}{2}\right) \Gamma (1-\alpha _k)}\) converges to \(\frac{2}{\pi }\) as \(k\rightarrow \infty \). So we are left with showing that the real part of the above integral vanishes as \(k\rightarrow \infty \). Fixing an arbitrary \(\epsilon > 0\), we write

$$\begin{aligned}&{{\,\mathrm{Re}\,}}\left[ \int _0^\infty \frac{1 - \varphi _k(-u)}{u^{1+\alpha _k}} d u \right] \nonumber \\&\quad = \int _0^\infty \frac{1}{u^{1+\alpha _{k}}} \left[ 1 - \exp \left\{ -u^{\alpha _{k+1}} \cos \left( \frac{\pi \alpha _{k+1}}{2} \right) \right\} \cos \left( u - u^{\alpha _{k+1}} \sin \left( \frac{\pi \alpha _{k+1}}{2} \right) \right) \right] d u \nonumber \\&\quad = \int _0^\epsilon \frac{1}{u^{1+\alpha _{k}}} \left[ 1 - \exp \left\{ -u^{\alpha _{k+1}} \cos \left( \frac{\pi \alpha _{k+1}}{2} \right) \right\} \cos \left( u - u^{\alpha _{k+1}} \sin \left( \frac{\pi \alpha _{k+1}}{2} \right) \right) \right] d u \end{aligned}$$
(A.7)
$$\begin{aligned}&\qquad + \int _\epsilon ^\infty \frac{1}{u^{1+\alpha _{k}}} \left[ 1 - \exp \left\{ -u^{\alpha _{k+1}} \cos \left( \frac{\pi \alpha _{k+1}}{2} \right) \right\} \cos \left( u - u^{\alpha _{k+1}} \sin \left( \frac{\pi \alpha _{k+1}}{2} \right) \right) \right] d u. \end{aligned}$$
(A.8)

To control (A.8), note that the integrand converges to zero as \(k \rightarrow \infty \) and can be bounded by \(2/u^{1+\alpha _k} \le 2/u^{3/2}\) for large enough k. Therefore, by dominated convergence, (A.8) vanishes as \(k \rightarrow \infty \) for any \(\epsilon > 0\).

We control (A.7), using \(1-e^{-x} \le x\), as follows. It is bounded above by

$$\begin{aligned}&\int _0^\epsilon \frac{1}{u^{1+\alpha _{k}}} \left[ u^{\alpha _{k+1}} \cos \left( \frac{\pi \alpha _{k+1}}{2} \right) - \log \cos \left( u - u^{\alpha _{k+1}} \sin \left( \frac{\pi \alpha _{k+1}}{2} \right) \right) \right] d u\nonumber \\&\quad = \int _0^\epsilon \frac{1}{u^{1+\alpha _{k}}} u^{\alpha _{k+1}} \cos \left( \frac{\pi \alpha _{k+1}}{2} \right) d u - \int _0^\epsilon \frac{1}{u^{1+\alpha _{k}}} \log \cos \left( u - u^{\alpha _{k+1}} \sin \left( \frac{\pi \alpha _{k+1}}{2} \right) \right) d u\nonumber \\&\quad = \frac{\epsilon ^{\alpha _{k+1} - \alpha _k}}{\alpha _{k+1} - \alpha _k} \cos \left( \frac{\pi \alpha _{k+1}}{2} \right) - \int _0^\epsilon \frac{1}{u^{1+\alpha _{k}}} \log \cos \left( u - u^{\alpha _{k+1}} \sin \left( \frac{\pi \alpha _{k+1}}{2} \right) \right) d u. \end{aligned}$$
(A.9)

Since \(\frac{1-\alpha _{k+1}}{1-\alpha _k} \xrightarrow {k \rightarrow \infty } 0\) by hypothesis and \(\cos (\pi x /2)/(1-x) \xrightarrow {x \rightarrow 1} \frac{\pi }{2}\), we can rewrite the leftmost term from (A.9) as

$$\begin{aligned}&\frac{\epsilon ^{\alpha _{k+1} - \alpha _k}}{\alpha _{k+1} - \alpha _k} \cos \left( \frac{\pi \alpha _{k+1}}{2} \right) = \epsilon ^{\alpha _{k+1} - \alpha _k} \frac{1- \alpha _{k+1}}{\alpha _{k+1} - \alpha _k} \frac{\cos \left( \frac{\pi \alpha _{k+1}}{2} \right) }{1-\alpha _{k+1}}\\&\quad = \epsilon ^{\alpha _{k+1} - \alpha _k} \left( \frac{1 - \alpha _k}{1- \alpha _{k+1}} - 1 \right) ^{-1} \frac{\cos \left( \frac{\pi \alpha _{k+1}}{2} \right) }{1-\alpha _{k+1}} \xrightarrow {k \rightarrow \infty } 0. \end{aligned}$$

To control the integral in (A.9), let us first remark that there exists an \(\epsilon _0 > 0\) such that if \(|x| < \epsilon _0\), then \(-\log \cos x < x^2\). Thus, for small enough \(\epsilon > 0\) we can write

$$\begin{aligned}&- \int _0^\epsilon \frac{du}{u^{1+\alpha _{k}}} \log \cos \left( u - u^{\alpha _{k+1}} \sin \left( \frac{\pi \alpha _{k+1}}{2} \right) \right) \le \int _0^\epsilon \frac{du}{u^{1+\alpha _{k}}} \left( u - u^{\alpha _{k+1}} \sin \left( \frac{\pi \alpha _{k+1}}{2} \right) \right) ^2 \\&\quad = \int _0^\epsilon \left[ u^{1-\alpha _k} - 2 u^{\alpha _{k+1} - \alpha _k} \sin \left( \frac{\pi \alpha _{k+1}}{2} \right) + u^{2 \alpha _{k+1} - \alpha _k - 1} \sin ^2\left( \frac{\pi \alpha _{k+1}}{2} \right) \right] d u\\&\quad = \frac{\epsilon ^{2-\alpha _k}}{2-\alpha _k} - 2 \frac{\epsilon ^{\alpha _{k+1} - \alpha _k + 1}}{\alpha _{k+1} - \alpha _k + 1} \sin \left( \frac{\pi \alpha _{k+1}}{2} \right) + \frac{\epsilon ^{2 \alpha _{k+1} - \alpha _k}}{2\alpha _{k+1} - \alpha _k} \sin ^2\left( \frac{\pi \alpha _{k+1}}{2} \right) \xrightarrow {k \rightarrow \infty } 0. \end{aligned}$$

\(\square \)

Auxiliary Results; Proof of Lemma 2.2

We collect here a few elementary results used in the main part of the text, and provide a proof of Lemma 2.2.

Lemma B.1

Recall (1.4,1.4b). Almost surely \(X_{k-1}(\sigma _i^{k, x}) \in {\mathbb {N}}^{k-1}\), \(k,x\ge 1\).

Proof

This is obvious for \(k=1\); let then \(k\ge 2\). We first note that for \(1\le j < k\), \(X_{k-1, j}(s) = \infty \) only if s belongs to the range of \(\theta _j^{k-1}\), and this set has null Lebesgue measure, since \(\theta _j^{k-1}\) increases only by jumps (at the points of the Poisson processes \( N^{j,x}\), \(x \in {\mathbb {N}}\)). Combining the latter point with that fact that the Poisson processes \( N^{k,x}\), \(x \in {\mathbb {N}}\), are independent from \(\theta _j^{k-1}\), we readily find that the probability that \(\sigma _i^{k, x}\) belongs to the range of \(\theta _j^{k-1}\) for some ix vanishes, and the result follows. \(\square \)

Proposition B.2

Let \(\{\xi _i: i \in {\mathbb {N}}\}\) be the marks of a Poisson point process on \({\mathbb {R}}^+\) with intensity measure \(\mu (d t) = \frac{c}{t^{1+\alpha }}\,dt\), \(t >0\), with some \(\alpha \in (0, 1)\) and \(c > 0\). Let \(\{ R_i : i \in {\mathbb {N}}\}\) be i.i.d. positive random variables, independent from the Poisson process, such that \({\mathbb {E}}(R_1^\alpha ) <\infty \). Then \(\{ R_i\xi _i : i \in {\mathbb {N}}\}\) is also a Poisson point process, with intensity measure \({\mathbb {E}}(R_1^\alpha ) \mu \).

Proof

Define \(S := \{ (\xi _i, R_i): i \in {\mathbb {N}}\}\) and note that S is the set of the marks of a Poisson point process on the first quadrant of \({\mathbb {R}}^2\) with intensity measure \(\pi = \mu \times \nu \), where \(\nu \) is the probability measure of \(R_1\).

Note that \(T(x, y) = xy\) is a continuous transformation with no accumulation point except 0, so \(\{ T(s): s \in S\} = \{R_i\xi _i : i \in {\mathbb {N}}\}\) is a Poisson point process (see eg. [33], Mapping Theorem, Section 2.3); its intensity measure is readily determined to be \({\mathbb {E}}(R_1^\alpha ) \mu \). \(\square \)

Proposition B.3

Let R be a positive random variable with Laplace transform \(\phi (\lambda ) := {\mathbb {E}}(e^{-\lambda R}) = e^{-c \lambda ^\alpha }\), \(\lambda >0\), for some \(c > 0\), \(\alpha \in (0, 1)\). Then for \(0< \beta < \alpha \):

$$\begin{aligned} {\mathbb {E}}(R^\beta ) = c^{\beta /\alpha } \frac{\Gamma \left( 1 - \beta /\alpha \right) }{\Gamma (1-\beta )}. \end{aligned}$$

Proof

By Fubini and the fact that \(\phi ^\prime (\lambda ) = - {\mathbb {E}}(R e^{-\lambda R})\), we have that

$$\begin{aligned} - \int _0^\infty \!\phi ^\prime (\lambda ) \lambda ^{-\beta } d \lambda= & {} {\mathbb {E}}\!\left( \int _0^\infty Re^{-\lambda R}\lambda ^{-\beta } d \lambda \right) \! \\= & {} {\mathbb {E}}\!\left( R^\beta \int _0^\infty e^{-\lambda }\lambda ^{-\beta } d \lambda \right) \! ={\mathbb {E}}(R^\beta )\Gamma (1-\beta ). \end{aligned}$$

It follows that \( {\mathbb {E}}(R^\beta ) = - \frac{1}{\Gamma (1-\beta )} \int _0^\infty \phi ^\prime (\lambda ) \lambda ^{-\beta } d \lambda , \) and differentiating \(\phi (\lambda ) = e^{-c \lambda ^\alpha }\) and substituting in the latter expression yields the result. \(\square \)

We now justify a claim made at the beginning.

Corollary B.4

Claim (1.3) holds true.

Proof

By the definition of \(\gamma _\cdot (\cdot )\), we have that \({\mathcal {R}}_k(x|_{k-1}):=\sum _{x_k\in {\mathbb {N}}}\gamma _k(x|_{k-1},x_k)\) is an \(\alpha _k\)-stable random variable for every \(x|_{k-1}\in {\mathbb {N}}^{k-1}\). It follows from Proposition B.2 that for every \(x|_{k-2}\in {\mathbb {N}}^{k-2}\), \(\left\{ \gamma _k(x|_{k-2},x_{k-1})\sum _{x_k\in {\mathbb {N}}}\gamma _k(x|_{k-2},x_{k-1},x_k),\,x_{k-1}\in {\mathbb {N}}\right\} \) is a Poisson point process with intensity measure const \(\times \mu _{k-1}\), with const \(={\mathbb {E}}({\mathcal {R}}_k(1,\ldots ,1)^{\alpha _{k-1}})\) finite by Proposition B.3. The result follows by iteration. \(\square \)

Proof of Lemma 2.2

(2.11) is established in the proof of Lemma 4.6 in [21]. We present an explicit argument for \({{\theta }}_1^n\); the case of \({\hat{\theta }}_1^n\) is similar. We proceed by induction on n. The case \(n = 1\) is a direct consequence of the independence and stationarity of increments of Poisson point processes, as well as of the fact that the variables used to construct \(\theta _1^1 = {\Xi }_1\) are independent.

Assuming \(n \ge 2\), note that for \(t, s > 0\):

$$\begin{aligned} \theta _1^n(t+s) - \theta _1^n(t)&= \sum _{x} \sum _{i = N^{n, x}(\theta _1^{n-1}(t)) + 1}^{N^{n, x}(\theta _1^{n-1}(t+s))} \gamma _n(X_{n-1}(\sigma _i^{n, x}) x) T^{n, x}_i. \end{aligned}$$

Fix \(0 = t_0< t_1< \cdots < t_k\) and let us look at the joint law of \((\theta _1^n(t_i) - \theta _1^{n}(t_{i-1}))_{i = 1, \cdots , k}\).

\(\theta _1^n(t_i) - \theta _1^{n}(t_{i-1})\), for varying values of i, depends on disjoint intervals of the Poisson processes \(N^{n, x}\), each one with length \(\theta _1^{n-1}(t_{i}) - \theta _1^{n-1}(t_{i-1})\). Because of the induction hypothesis these lengths are independent and each one has the same law as \(\theta _1^{n-1}(t_i - t_{i-1})\).

Note that, as follows from Lemma B.1, we have that for fixed \(t > 0\), \(X_{n-1}(\theta _1^{n-1}(t)) = (\infty , \cdots , \infty )\) a.s. The instant \(\theta _1^{n-1}(t)\) is thus a renewal time for \(X_{n-1}\), and, by construction, the law of \(X_{n-1}\) at such a renewal is the same as at time 0.

\(\theta _1^n(t_i) - \theta _1^n(t_{i-1})\) also depends on the values of \(X_{n-1}(r)\) for \(r \in (\theta _1^{n-1}(t_{i-1}), \theta _1^{n-1}(t_i))\). Both ends of this interval are renewals, so what happens to \(X_{n-1}\) inside such an interval is independent of what happens on other such intervals (namely, \((\theta _1^{n-1}(t_{j-1}),\theta _1^{n-1}(t_j))\), \(j\ne i\)).

Therefore we have that \(\theta _1^n(t_i) - \theta _1^n(t_{i-1})\), \(i\ge 1\), are independent, and the law of each \(\theta _1^n(t_i) - \theta _1^n(t_{i-1})\) depends only on \(t_i - t_{i-1}\). That is, \(\theta _1^n\) has independent and stationary increments. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontes, L.R., Peixoto, G.R.C. Infinite Level GREM-Like K-Processes Existence and Convergence. J Stat Phys 182, 50 (2021). https://doi.org/10.1007/s10955-021-02713-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02713-5

Keywords

Mathematics Subject Classification

Navigation