Skip to main content
Log in

Integrability and Braided Tensor Categories

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Many integrable statistical mechanical models possess a fractional-spin conserved current. Such currents have been constructed by utilising quantum-group algebras and ideas from “discrete holomorphicity”. I find them naturally and much more generally using a braided tensor category, a topological structure arising in knot invariants, anyons and conformal field theory. I derive a simple constraint on the Boltzmann weights admitting a conserved current, generalising one found using quantum-group algebras. The resulting trigonometric weights are typically those of a critical integrable lattice model, so the method here gives a linear way of “Baxterising”, i.e. building a solution of the Yang-Baxter equation out of topological data. It also illuminates why many models do not admit a solution. I discuss many examples in geometric and local models, including (perhaps) a new solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Artin coined the term in 1925, but there are antecedents [46]. Yang was born in 1922, Baxter 1940.

  2. I am grateful to Denis Bernard for this observation, made at my seminar on this work at the MSRI in 2012.

References

  1. Temperley, H.N.V., Lieb, E.H.: Relationsbetween the “percolation” and “colouring” problem and othergraph-theoretical problems associated with regular planar lattices:some exact results for the “percolation” problem. Proc. Roy.Soc. Lond. A322, 251 (1971)

  2. Fortuin, C.M., Kasteleyn, P.W.: On the Random cluster model. 1. Introduction and relation to other models. Physica 57, 536 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  3. Baxter, R.J., Kelland, S.B., Wu, F.Y.: Equivalence of the Potts model or Whitney polynomial with an ice-type model. J. Phys. A 9, 397 (1976)

    Article  MATH  ADS  Google Scholar 

  4. Andrews, G., Baxter, R., Forrester, P.: Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities. J. Stat. Phys. 35, 193 (1984)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Pasquier, V.: Two-dimensional critical systems labelled by Dynkin diagrams. Nucl. Phys. B 285, 162 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  6. Birman, J.S., Wenzl, H.: Braids, link polynomials and a new algebra. Trans. Am. Math. Soc. 313, 249 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Murakami, J.: The Kauffman polynomial of links and representation theory, In: New Developments In The Theory Of Knots ( World Scientific, 1990) pp. 480–493

  8. Jimbo, M., Miwa, T., Okado, M.: Solvable Lattice Models Related to the Vector Representation of Classical Simple Lie Algebras. Commun. Math. Phys. 116, 507 (1988)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Jones, V.: Hecke algebra representations of braid groups and link polynomials. Ann. Math. 126, 335 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kauffman, L.: Knots and Physics, K & E series on knots and everything ( World Scientific, 1991)

  11. Moore, G.W., Seiberg, N.: “LECTURES ON RCFT”, In: 1989 Banff NATO ASI: Physics, Geometry and Topology Banff, Canada, August 14-25, 1989 ( 1989)

  12. Kitaev, A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Bonderson, P.H.: “Non-abelian anyons and interferometry”, Non-abelian anyons and interferometry, Ph.D. thesis, Caltech (2007)

  14. Aasen, D., Fendley, P., Mong, R.: “ Topological defects on the lattice: Dualities and degeneracies,” (2020), arXiv:2008.08598

  15. Bakalov, B., Kirillov, A.: Lectures on tensor categories and modular functors 21, (2001)

  16. Wang, Z.: Topological Quantum Computation ( American Mathematical Society, 2010)

  17. Baxter, R.J.: Exactly solved models in statistical mechanics ( Academic, 1982)

  18. Jones, V.F.R.: On knot invariants related to some statistical mechanical models. Pac. J. Math. 137, 311 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wadati, M., Deguchi, T., Akutsu, Y.: Exactly Solvable Models and Knot Theory. Phys. Rept. 180, 247 (1989)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Wu, F.Y.: “Knot theory and statistical mechanics”, Rev. Mod. Phys. 64, 1099 ( 1992), [Erratum: Rev. Mod. Phys.65,577(1993)]

  21. Jones, V.F.R.: “Baxterization,” in Differential Geometric Methods in Theoretical Physics: Physics and Geometry ( Springer, pp. 5–11. US, Boston, MA (1990)

  22. Jones, V.F.: “ In and around the origin of quantum groups,” (2003), arXiv:1805.05736

  23. Drinfeld, V.: Hopf algebras and the quantum Yang-Baxter equation. Sov. Math. Dokl. 32, 254 (1985)

    Google Scholar 

  24. Kirillov, A., Reshetikhin, N.: \(q\) Weyl Group and a Multiplicative Formula for Universal R Matrices. Commun. Math. Phys. 134, 421 (1990)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Khoroshkin, S.M., Tolstoy, V.N.: Universal R-matrix for quantized (super)algebras. Commun. Math. Phys. 141, 599 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Gomez, C., Sierra, G., Ruiz-Altaba, M.: Quantum groups in two-dimensional physics, Cambridge Monographs on Mathematical Physics ( Cambridge University Press, 2011)

  27. Jimbo, M.: Quantum r Matrix for the Generalized Toda System. Commun. Math. Phys. 102, 537 (1986)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Zhang, R.-B., Gould, M., Bracken, A.: From Representations of the Braid Group to Solutions of the Yang-Baxter Equation. Nucl. Phys. B 354, 625 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  29. Delius, G.W., Gould, M.D., Zhang, Y.-Z.: On the construction of trigonometric solutions of the Yang-Baxter equation. Nucl. Phys. B 432, 377 (1994). arXiv:hep-th/9405030

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Delius, G.W., Gould, M.D., Zhang, Y.-Z.: “Twisted Quantum Affine Algebras and Solutions to the Yang-Baxter Equation”, Int. J. Mod. Phys. A 11, 3415 (1996), arXiv:q-alg/9508012

  31. Bernard, D., Felder, G.: Quantum group symmetries in 2-D lattice quantum field theory. Nucl. Phys. B 365, 98 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  32. Smirnov, S.: Towards conformal invariance of 2D lattice models. Proc. Int. Congr. Math. 2, 1421 (2006). arXiv:0708.0032

    MathSciNet  MATH  Google Scholar 

  33. Cardy, J.: Discrete Holomorphicity at Two-Dimensional Critical Points. J. Stat. Phys. 137, 814 (2009). arXiv:0907.4070

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. Shankar, R., Witten, E.: The S Matrix of the Supersymmetric Nonlinear Sigma Model. Phys. Rev. D 17, 2134 (1978)

    Article  ADS  Google Scholar 

  35. Dorey, P.: “Exact S matrices”, In: Eotvos Summer School in Physics: Conformal Field Theories and Integrable Models ( 1996) pp. 85–125, arXiv:hep-th/9810026

  36. Walker, K.: TQFTs (2006)

  37. Nienhuis, B.: Critical and multicritical O(n) models. Physica A 163, 152 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  38. Reshetikhin, N.: (1988), unpublished manuscripts, Quantized universal enveloping algebras, the Yang-Baxter equation and invariants of links, I and II

  39. Turaev, V.G.: Shadow links and face models of statistical mechanics. J. Differ. Geom. 36, 35 (1992)

    MathSciNet  MATH  Google Scholar 

  40. Turaev, V., Viro, O.: State sum invariants of 3 manifolds and quantum 6j symbols. Topology 31, 865 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Barrett, J., Westbury, B.: Invariants of piecewise-linear 3-manifolds. Trans. Am. Math. Soc. 348, 3997 (1996). arXiv:hep-th/9311155

    Article  MathSciNet  MATH  Google Scholar 

  42. Feiguin, A., Trebst, S., Ludwig, A.W.W., Troyer, M., Kitaev, A., Wang, Z., Freedman, M.H.: “Interacting anyons in topological quantum liquids: The golden chain”, Phys. Rev. Lett. 98, 160409 ( 2007), arXiv:cond-mat/0612341

  43. Au-Yang, H., McCoy, B.M., Perk, J.H.H., Tang, S., Yan, M.-L.: Commuting transfer matrices in the chiral Potts models: Solutions of star-triangle equations with genus \(> 1\). Phys. Lett. A 123, 219 (1987)

    Article  MathSciNet  Google Scholar 

  44. Aasen, D., Mong, R.S.K., Fendley, P.: “Topological Defects on the Lattice I: The Ising model”, J. Phys. A 49, 354001 (2016), arXiv:1601.07185

  45. Birman, J.S., Cannon, J.: Braids, Links, and Mapping Class Groups. (AM-82) ( Princeton University Press, 1974)

  46. Magnus, W.: Braid Groups: A Survey. In: M. F. Newman (Eds.) Proceedings of the Second International Conference on the Theory of Groups ( Springer, Berlin, 1974) pp. 463–487

  47. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333 (1984)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. Friedan, D., Qiu, Z., Shenker, S.: Conformal Invariance, Unitarity, and Critical Exponents in Two Dimensions. Phys. Rev. Lett. 52, 1575 (1984)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. Duminil-Copin, H., Smirnov, S.: Conformal invariance of lattice models. Probability and Statistical Physics in Two and More Dimensions, Clay Mathematics Proceedings 15, 213–276 (2012). arXiv:1109.1549

  50. Chelkak, D., Smirnov, S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189, 515 (2012). arXiv:0910.2045

    Article  MathSciNet  MATH  ADS  Google Scholar 

  51. Chelkak, D., Laslier, B., Russkikh, M.: “ Dimer model and holomorphic functions on t-embeddings of planar graphs,” (2020), arXiv:2001.11871

  52. Fradkin, E., Kadanoff, L.P.: Disorder variables and para-fermions in two-dimensional statistical mechanics. Nucl. Phys. B 170, 1 (1980)

    Article  ADS  Google Scholar 

  53. Riva, V., Cardy, J.: Holomorphic parafermions in the Potts model and SLE. J. Stat. Mech. 0612, P12001 (2006), arXiv:cond-mat/0608496

  54. Mong, R.S.K., Clarke, D.J., Alicea, J., Lindner, N.H., Fendley, P.: Parafermionic conformal field theory on the lattice. J. Phys. A 47, 452001 (2014). arXiv:1406.0846

    Article  MathSciNet  MATH  ADS  Google Scholar 

  55. Rajabpour, M.A., Cardy, J.: Discretely Holomorphic Parafermions in Lattice \(Z_N\) Models. J. Phys. A 40, 14703 (2008). arXiv:0708.3772

    Article  MATH  Google Scholar 

  56. Ikhlef, Y., Rajabpour, M.A.: Discrete holomorphic parafermions in the Ashkin-Teller model and SLE. J. Phys. A 44, 042001 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  57. Ikhlef, Y., Fendley, P., Cardy, J.: An Integrable modification of the critical Chalker-Coddington network model. Phys. Rev. B 84, 144201 (2011). arXiv:1103.3368

    Article  ADS  Google Scholar 

  58. de Gier, J., Lee, A., Rasmussen, J.: Discrete holomorphicity and integrability in loop models with open boundaries. J. Stat. Mech. 1302, P02029 (2013). arXiv:1210.5036

    Article  MathSciNet  MATH  Google Scholar 

  59. Alam, I.T., Batchelor, M.T.: Integrability as a consequence of discrete holomorphicity: loop models. J. Phys. A 47, 215201 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  60. Bondesan, R., Dubail, J., Faribault, A., Ikhlef, Y.: Chiral SU(2)\(_k\) currents as local operators in vertex models and spin chains. J. Phys. A 48, 065205 (2015). arXiv:1409.8590

    Article  MathSciNet  MATH  Google Scholar 

  61. Ikhlef, Y., Weston, R.: “Discrete Holomorphicity in the Chiral Potts Model”, J. Phys. A48, 294001 (2015), arXiv:1502.04944

  62. Chelkak, D., Glazman, A., Smirnov, S.: Discrete stress-energy tensor in the loop o(n) model. (2016). arXiv:1604.06339

  63. Ikhlef, Y., Weston, R.: Conserved currents in the six-vertex and trigonometric solid-on-solid models. J. Phys. A50, 164003 ( 2017), arXiv:1612.03666

  64. Bonderson, P., Delaney, C., Galindo, C., Rowell, E.C., Tran, A., Wang, Z.: On invariants of Modular categories beyond modular data. J. Pure Appl. Algebra 223, 4065 (2019), arXiv:1805.05736

  65. Feger, R., Kephart, T.W., Saskowski, R.J.: LieART 2.0 ? A Mathematica application for Lie Algebras and Representation Theory, Comp. Phys. Communications , 107490 (2020), arXiv:1912.10969

  66. Kuniba, A.: Exact solutions of solid on solid models for twisted affine Lie algebras A(2)(2n) and A(2)(2n–1). Nucl. Phys. B 355, 801 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  67. Izergin, A.G., Korepin, V.E.: THE INVERSE SCATTERING METHOD APPROACH TO THE QUANTUM SHABAT-MIKHAILOV MODEL. Commun. Math. Phys. 79, 303 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  68. Fendley, P.: Integrable sigma models and perturbed coset models. JHEP 05, 050 (2001). arXiv:hep-th/0101034

    Article  MathSciNet  ADS  Google Scholar 

  69. Date, E., Jimbo, M., Kuniba, A., Miwa, T., Okado, M.: Exactly solvable Sos models: local height probabilities and theta function identities. Nucl. Phys. B 290, 231 (1987)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  70. Kulish, P.P., Reshetikhin, NYu., Sklyanin, E.K.: Yang-Baxter equation and representation theory. 1. Lett. Math. Phys. 5, 393 (1981)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  71. Macfarlane, A.: Lie algebra and invariant tensor technology for g 2. Int. J. Mod. Phys. A 16, 3067 (2001). arXiv:math-ph/0103021

    Article  MathSciNet  MATH  ADS  Google Scholar 

  72. Kim, J., Koh, I., Ma, Z.-Q.: Quantum R matrix for E(7) and F(4) groups. J. Math. Phys. 32, 845 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  73. Fateev, V.A., Zamolodchikov, A.B.: Selfdual solutions of the star triangle relations in Z(N) models. Phys. Lett. A 92, 37 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  74. Tambara, D., Yamagami, S.: Tensor categories with fusion rules of self-duality for finite abelian groups. J. Algebra 209, 692 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  75. Zamolodchikov, A.B., Fateev, V., Eksp, Zh: Teor. Fiz. 89, 380 (1985)

  76. Zamolodchikov, A.B., Fateev, V.: Eng. transl. JETP 62, 215–225 (1985)

  77. Babichenko, A.: Quantum integrability of sigma models on A2 and C2 symmetric spaces. Phys. Lett. B 554, 96 (2003). arXiv:hep-th/0211114

    Article  MathSciNet  MATH  ADS  Google Scholar 

  78. Baxter, R.J.: Solvable eight vertex model on an arbitrary planar lattice. Phil. Trans. Roy. Soc. Lond. A 289, 315 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  79. Zhou, Y., Batchelor, M.: Critical behaviour of the dilute O(n) Izergin-Korepin and dilute AL face models: bulk properties. Nucl. Phys. B 485, 646 (1997)

    Article  MATH  ADS  Google Scholar 

  80. Muger, M.: From subfactors to categories and topology II: the quantum double of tensor categories and subfactors. J. Pure Appl. Algebra. 180, 159 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  81. Aasen, D., Mong, R.: ( 2016), unpublished

  82. Evans, D.E., Pinto, P.R.: Modular invariants and the double of the Haagerup subfactor, In: Advances in Operator Algebras and Mathematical Physics ( Sinaia, 2003) pp. 67–88

  83. Hong, S.-M., Rowell, E., Wang, Z.: On exotic modular tensor categories. Commun. Contemp. Math. 10, 1049 (2008). arXiv:0710.5761

    Article  MathSciNet  MATH  Google Scholar 

  84. Evans, D.E., Gannon, T.: The exoticness and realisability of twisted Haagerup-Izumi modular data. Commun. Math. Phys. 307, 463 (2011). arXiv:1006.1326

    Article  MathSciNet  MATH  ADS  Google Scholar 

  85. Osborne, T.: ( 2020), unpublished

  86. Gould, M.D., Zhang, Y.-Z.: R matrices and tensor product graph method. Int. J. Mod. Phys. B 16, 2145 (2002). arXiv:hep-th/0205071

    Article  MathSciNet  MATH  ADS  Google Scholar 

  87. Costello, K., Witten, E., Yamazaki, M.: Gauge Theory And Integrability, I, Notices of the International Congress of Chinese Mathematicians 6, 46 ( 2018), arXiv:1709.09993

Download references

Acknowledgements

I am very grateful to David Aasen and Roger Mong for collaboration on [14, 44] and for their mentoring in the Way of the Category. I thank Denis Bernard and John Cardy for essential conversations many moons ago, and Niall Mackay, Eric Rowell and Eric Vernier for helpful comments and guidance to the literature. This work was supported by EPSRC grants EP/S020527/1 and EP/N01930X.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Fendley.

Additional information

Communicated by T. Prosen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fendley, P. Integrability and Braided Tensor Categories. J Stat Phys 182, 43 (2021). https://doi.org/10.1007/s10955-021-02712-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02712-6

Keywords

Navigation