Skip to main content
Log in

Effects of Random Excitations on the Dynamical Response of Duffing Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the dynamics of a Duffing oscillator excited by correlated random perturbations for both fixed and periodically modulated stiffness. In the case of fixed stiffness we see that Poincaré map gets distorted due to the random excitation and, the distortion increases with the increase of correlation of the field. In a strongly correlated field, however, the map becomes purely random. We analyse the maximum value of the Lyapunov exponent and see that the random response competes with the chaotic motion to increase the stability of the system. In the case of periodically modulated stiffness, the periodic parametric excitation causes the Duffing system to execute dynamics of two fixed-point attractors. These attractors remain non-chaotic even in the presence of random field but can get merged due to induced fluctuation in the trajectory. It is seen that the random field can change the status of the system from transit to stable state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, New York (1993)

    MATH  Google Scholar 

  2. Kaplan, D., Glass, L.: Understanding Nonlinear Dynamics. Springer, Berlin (1995)

    Book  Google Scholar 

  3. Lakshmanan, M., Rajasekar, S.: Nonlinear Dynamics: Integrability, Chaos and Patterns. Springer, Berlin (2003)

    Book  Google Scholar 

  4. Chacon, R.: Chaos and geometrical resonance in the damped pendulum subjected to periodic pulses. J. Math. Phys. 38, 1477 (1997). https://doi.org/10.1063/1.531816

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Sekh, Golam Ali, Kalikotay, Pallavi: Dynamics of self-reinforcing matter-wave in gravito-optical surface trap. Chaos 29, 103112 (2019). https://doi.org/10.1063/1.5116328

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Chacon, R.: Inhibition of chaos in Hamiltonian systems by periodic pulses. Phys. Rev. E 50, 750 (1994). https://doi.org/10.1103/PhysRevE.50.750

    Article  ADS  Google Scholar 

  7. Yong, Xu, et al.: Effects of combined harmonic and random excitations on a Brusselator model. Eur. Phys. J. B 90, 194 (2017). https://doi.org/10.1140/epjb/e2017-80076-9

    Article  ADS  MathSciNet  Google Scholar 

  8. Iyengar, R.N.: A nonlinear system under combined periodic and random excitation. J. Stat. Phys. 44, 907 (1986). https://doi.org/10.1007/BF01011913

    Article  ADS  MathSciNet  Google Scholar 

  9. Konishi, K.: Generating chaotic behavior in an oscillator driven by periodic forces. Phys. Lett. A 320, 200 (2003). https://doi.org/10.1016/j.physleta.2003.11.024

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Le, Z.M., Leu, W.Y.: Anti-control of chaos of two-degrees-of-freedom loudspeaker system and chaos synchronization of different order systems. Chaos Solitons Fract. 20, 503 (2004). https://doi.org/10.1016/j.chaos.2003.07.001

    Article  ADS  MATH  Google Scholar 

  11. Aldridge, J.S., Cleland, A.N.: Noise-enabled precision measurements of a Duffing nanomechanical resonator. Phys. Rev. Lett. 94, 156403 (2005). https://doi.org/10.1103/PhysRevLett.94.156403

    Article  ADS  Google Scholar 

  12. Kapitaniak, T.: Controlling chaotic oscillators without feedback. Phys. Lett. A. 144, 322 (1990). https://doi.org/10.1016/0960-0779(92)90027-K

    Article  ADS  MathSciNet  Google Scholar 

  13. Mehri, B., Ghorashi, M.: Periodically forced Duffing’s equation. J. Sound Vib. 169, 289 (1994). https://doi.org/10.1006/jsvi.1994.1019

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Kim, S.Y., Kim, Y.: Dynamic stabilization in the double-well Duffing oscillator. Phys. Rev. E. 61, 6517 (2000). https://doi.org/10.1103/PhysRevE.61.6517

    Article  ADS  Google Scholar 

  15. Li, X., Shen, Y., Sun, J.: New periodic-chaotic attractors in slow-fast Duffing system with periodic parametric excitation. Sci. Rep. 9, 11185 (2019). https://doi.org/10.1038/s41598-019-46768-7

    Article  ADS  Google Scholar 

  16. Perkins, Edmon: Effects of noise on the frequency response of the monostable Duffing oscillator. Phys. Lett. A 381, 1009 (2017). https://doi.org/10.1016/j.physleta.2017.01.037

    Article  ADS  Google Scholar 

  17. Anh, N.D., Hieu, N.N.: The Duffing oscillator under combined periodic and random excitations. Prob. Eng. Mech. 30, 27 (2012). https://doi.org/10.1016/j.probengmech.2012.02.004

    Article  Google Scholar 

  18. Garnier, J.: Solitons in random media with long-range correlation. Waves Random Media 11, 149 (2001). https://doi.org/10.1088/0959-7174/11/3/301

    Article  ADS  MATH  Google Scholar 

  19. Lingala, N., Namachchivaya, N.S., Pavlyukevich, I., Wedig, W.: Random perturbations of periodically driven nonlinear iscillators. Procedia IUTAM 19, 91 (2016). https://doi.org/10.1016/j.piutam.2016.03.013

    Article  Google Scholar 

  20. Chen, L., Zhu, W.: Stochastic jump and bifurcation of Duffing oscillator with fractional derivative damping under combined harmonic and white noise excitations. Int. J. Non-Linear Mech. 46, 1324 (2011). https://doi.org/10.1016/j.ijnonlinmec.2011.07.002

    Article  ADS  Google Scholar 

  21. Zhu, W., Lu, M.Q., Wu, Q.T.: Stochastic jump and bifurcation of a Duffing oscillator under narrow-band excitation. J. Sound Vib. 165, 285 (1993). https://doi.org/10.1006/jsvi.1993.1258

    Article  ADS  MATH  Google Scholar 

  22. Huang, Z.L., Zhu, W., Suzuki, Y.: Stochastic averaging of strongly non-linear oscillators under combined harmonic and white-noise excitations. J. Sound Vib. 238, 233 (2000). https://doi.org/10.1006/jsvi.2000.3083

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Cai, M.X., Yang, J.P., Deng, J.: Bifurcations and chaos in Duffing equation with damping and external excitations. Acta. Math. Appl. Sin. Engl. Ser. 30, 483 (2014). https://doi.org/10.1007/s10255-014-0284-0

    Article  MathSciNet  MATH  Google Scholar 

  24. Schumacher, J., Haslinger, R., Pipa, G.: Statistical modeling approach for detecting generalized synchronization. Phys. Rev. A 85, 056215 (2012). https://doi.org/10.1103/PhysRevE.85.056215

    Article  ADS  Google Scholar 

  25. Ma, J.Z., Xu, Y., Xu, W., Li, Y., Kurths, J.: Slowing down critical transitions via Gaussian white noise and periodic force. Sci. China Technol. Sci. 62, 2144 (2019). https://doi.org/10.1007/s11431-019-9557-2

    Article  ADS  Google Scholar 

  26. Wang, Z.Q., Xu, Y., Yang, H.: Lévy noise induced stochastic resonance in an FHN model. Sci. China Technol. Sci. 59, 371 (2016). https://doi.org/10.1007/s11431-015-6001-2

    Article  ADS  Google Scholar 

  27. Xu, Y., Li, Y., Li, J., Feng, J., Zhang, H.: The phase transition in a bistable Duffing system driven by Levy noise. J. Stat. Phys. 158, 120 (2015). https://doi.org/10.1007/s10955-014-1129-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Hawes, D.H., Langley, R.S.: Numerical methods for calculating the response of a deterministic and stochastically excited Duffing oscillator. Proc. Inst. Mech. Eng. C (2015). https://doi.org/10.1177/0954406215607544

    Article  Google Scholar 

  29. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285 (1985). https://doi.org/10.1016/0167-2789(85)90011-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Zanette, D.H.: Effects of noise on the internal resonance of a nonlinear oscillator. Sci. Rep. 8, 5976 (2018). https://doi.org/10.1038/s41598-018-24383-2

    Article  ADS  Google Scholar 

  31. Perkins, E., Balachandran, B.: Noise-enhanced response of nonlinear oscillators. Procedia IUTAM 5, 59 (2012). https://doi.org/10.1016/j.piutam.2012.06.009

    Article  Google Scholar 

  32. Cottone, F., Gammaitoni, L., Vocca, H., Ferrari, M., Ferrari, V.: Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater. Struct. 21, 035021 (2012). https://doi.org/10.1088/0964-1726/21/3/035021

    Article  ADS  Google Scholar 

  33. Roati, G., D’Errico, C., Fallani, L., Fattori, M., Fort, C., Zaccanti, M., Modugno, G., Modugno, M., Inguscio, M.: Anderson localization of a non-interacting BoseEinstein condensate. Nature 453, 895 (2008). https://doi.org/10.1038/nature07071

    Article  ADS  Google Scholar 

  34. Dey, K.K., Das, S., Sekh, G.A.: On the information entropy of matter-waves in quasi-periodic lattice potentials. Eur. Phys. J. D 73, 18 (2019). https://doi.org/10.1140/epjd/e2018-90259-7

    Article  ADS  Google Scholar 

  35. Majda, A.J., Kramer, P.R.: Simplified models for turbulent diffusion: theory, numerical modelling, and physical phenomena. Phys. Rep. 314, 237 (1999). https://doi.org/10.1016/S0370-1573(98)00083-0

    Article  ADS  MathSciNet  Google Scholar 

  36. Khellil, T., Balaz, A., Pelster, A.: Analytical and numerical study of dirty bosons in a quasi-one-dimensional harmonic trap. New J. Phys. 18, 063003 (2016). https://doi.org/10.1088/1367-2630/18/6/063003

    Article  ADS  Google Scholar 

  37. Wei, J.G., Leng, G.: Lyapunov exponent and chaos of Duffing’s equation perturbed by white noise. Appl. Math. Comput. 88, 77 (1997). https://doi.org/10.1016/S0096-3003(96)00307-4

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

G.S. would like to thank Professor Antun Balaz (Institute of Physics Belgrade, Serbia) for his suggestion on the generation of random potential. He would also like to thank Dr. Debaldev Jana (SRM University, India) for some useful discussion on the analysis of Lyapunov exponent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Golam Ali Sekh.

Additional information

Communicated by Chris Jarzynski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, K.K., Sekh, G.A. Effects of Random Excitations on the Dynamical Response of Duffing Systems. J Stat Phys 182, 18 (2021). https://doi.org/10.1007/s10955-020-02694-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-020-02694-x

Keywords

Navigation