Skip to main content
Log in

The Standard Chemical-Thermodynamic Properties of Phosphorus and Some of its Key Compounds and Aqueous Species: An Evaluation of Differences between the Previous Recommendations of NBS/NIST and CODATA

  • Special Issue Dedicated to Joseph Antoine Rard
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The aqueous chemistry of phosphorus is dominated by P(V), which under typical environmental conditions (and depending on pH and concentration) can be present as the orthophosphate species H3PO 04 (aq),H2PO 4 (aq),HPO 2−4 (aq) or PO 3−4 (aq). Many divalent, trivalent and tetravalent metal ions form sparingly soluble orthophosphate phases that, depending on the solution pH and concentrations of phosphate and metal ions, can be solubility limiting phases. Geochemical and chemical engineering modeling of solubilities and speciation require comprehensive thermodynamic databases that include the standard thermodynamic properties for the aqueous species and solid compounds. The most widely used sources for standard thermodynamic properties are the NBS (now NIST) Tables (from 1982 and earlier, with a 1989 erratum) and the final CODATA evaluation (1989). However, a comparison of the reported enthalpies of formation and Gibbs energies of formation for key phosphate compounds and aqueous species, especially H2PO 4 (aq) and HPO 2−4 (aq), shows a systematic and nearly constant difference of 6.3 to 6.9 kJ⋅mol−1 per phosphorus atom between these two evaluations. The existing literature contains numerous studies (including major data summaries) that are based on one or the other of these evaluations. In this report we examine and identify the origin of this difference and conclude that the CODATA evaluation is more reliable. Values of the standard entropies of the H2PO 4 (aq) and HPO 2−4 (aq) ions at 298.15 K and p ° =1 bar were re-examined in the light of more recent information and data not considered in the CODATA review, and a slightly different value of S om (H2PO 4 , aq, 298.15 K) = (90.6±1.5) J⋅K−1⋅mol−1 was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolery, T.J.: EQ3NR, A Computer Program for Geochemical Aqueous Speciation-Solubility Calculations: Theoretical Manual, User’s Guide, and Related Documentation (Version 7.0), Lawrence Livermore National Laboratory report UCRL-MA-110662 Part III, Livermore, California (1992)

  2. Marion, G.M., Grant, S.A.: FREZCHEM: A Chemical-Thermodynamic Model for Aqueous Solutions at Subzero temperatures, Special Report 94-18, US Army Corps of Engineers, Cold Region Research and Engineering Laboratory, Hanover, New Hampshire (1994)

  3. Plummer, L.N., Parkhurst, D.L., Fleming, G.W., Dunkle, S.A.: US Geological Survey Water-Resources Investigations Report 88-4153 (1988)

  4. Christov, C., Møller, N.: A chemical equilibrium model of solution behavior and solubility in the H-Na-K-Ca-OH-Cl-HSO4-SO4-H2O system to high concentration and temperature. Geochim. Cosmochim. Acta 68, 3717–3739 (2004)

    Article  CAS  Google Scholar 

  5. Marion, G.: Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system. Geochim. Cosmochim. Acta 65, 1883–1896 (2001)

    Article  CAS  Google Scholar 

  6. Alai, M., Sutton, M., Carroll, S.: Evaporative evolution of a Na-Cl-NO3-K-Ca-SO4-Mg-Si brine at 95°C: Experiments and modeling relevant to Yucca Mountain, Nevada. Geochem. Trans. 6(2), 31–45 (2005)

    Article  CAS  Google Scholar 

  7. Pitzer, K.S.: In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn. CRC, Boca Raton (1991), Chap. 3

    Google Scholar 

  8. Rard, J.A.: Chemistry and thermodynamics of europium and some of its simpler inorganic compounds and aqueous species. Chem. Rev. 85, 555–582 (1985)

    Article  CAS  Google Scholar 

  9. Wellman, D.M., Icenhower, J.P., Gamerdinger, A.P., Forrester, S.W.: Effects of pH temperature, and aqueous organic material on the dissolution kinetics of meta-autunite minerals, (Na,Ca)2−1[(UO2)(PO4)]2⋅3H2O. Am. Mineral. 91, 143–158 (2006)

    Article  CAS  Google Scholar 

  10. Rossini, F.D., Wagman, D.D., Evans, W.H., Levine, S., Jaffe, I.: Selected Values of Chemical Thermodynamic Properties, Circular of the National Bureau of Standards 500, U.S. Government Printing Office, Washington (1952)

  11. Wagman, D.D., Evans, W.H., Parker, V.B., Halow, I., Bailey, S.M., Schumm, R.H.: Selected Values of Chemical Thermodynamic Properties, Tables for the First Thirty-four Elements in the Standard Order of Arrangement, NBS Technical Note 270-3, U.S. Government Printing Office, Washington (1968)

  12. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., Nuttall, R.L.: The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11(Supplement No. 2), 1–392 (1982), errata: J. Phys. Chem. Ref. Data 18, 1807–1812 (1989)

    Google Scholar 

  13. Cox, J.D., Wagman, D.D., Medvedev, V.A.: CODATA Key Values for Thermodynamics. Hemisphere, New York (1989)

    Google Scholar 

  14. Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung, C., Wanner, H.: Chemical Thermodynamics of Uranium. Wanner, H., Forest, I. (eds.) Chemical Thermodynamics, vol. 1. North-Holland, Amsterdam (1992)

    Google Scholar 

  15. Head, A.J., Lewis, G.B.: Thermodynamic properties of phosphorus compounds. 3. The enthalpy of formation of aqueous orthophosphoric acid. J. Chem. Thermodyn. 2, 701–716 (1970)

    Article  CAS  Google Scholar 

  16. Schumm, R.H., Prosen, E.J., Wagman, D.D.: Enthalpy of formation of phosphorus pentachloride; derivation of the enthalpy of formation of aqueous orthophosphoric acid. J. Res. Nat. Bureau Stand. 78A, 375–386 (1974)

    Google Scholar 

  17. Birley, G.I., Skinner, H.A.: Heat of hydrolysis of phosphorus pentachloride, and heat of formation of aqueous orthophosphoric acid. Trans. Faraday Soc. 64, 3232–3234 (1968)

    Article  CAS  Google Scholar 

  18. Gurvich, L.V., Veyts, I.V., Alcock, C.B. (eds.): Thermodynamic Properties of Individual Substances, vol. 1, Elements O, H (D, T), F, Cl, Br, I, He, Ne, Ar, Kr, Xe, Rn, S, N, P, and their Compounds, 4th edn., Part One: Methods and Computation, and Part Two: Tables. Hemisphere, New York (1989)

  19. Chase, M.W. Jr.: NIST-JANAF Thermochemical Tables, 4th edn., Part I, Al-Co and Part II, Cr-Zr, J. Phys. Chem. Ref. Data Monograph No. 9 (1998)

  20. Barin, I.: La–Zr, 3rd edn. Thermochemical Data of Pure Substances, vol. II. VCH, New York (1995)

    Google Scholar 

  21. Guillaumont, R., Fanghänel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D.A., Rand, M.H.: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. Mompean, F.J., Illemassene, M., Domenech-Orti, C., Ben, K. (eds.) Chemical Thermodynamics, vol. 5. Elsevier, Amsterdam (2003)

    Google Scholar 

  22. Rai, D., Xia, Y., Rao, L., Hess, N.J., Felmy, A.R., Moore, D.A., McCready, D.E.: Solubility of (UO2)3(PO4)2⋅4H2O in H+-Na+-OH-H2PO 4 -HPO 2−4 -PO 3−4 -H2O and its comparison to the analogous PuO 2+2 system. J. Solution Chem. 34, 469–498 (2005)

    Article  CAS  Google Scholar 

  23. Weber, C.F., Beahm, E.C., Watson, J.S.: Modeling thermodynamics and phase equilibria for aqueous solutions of trisodium phosphate. J. Solution Chem. 28, 1207–1238 (1999)

    Article  CAS  Google Scholar 

  24. Johnson, J.W., Oelkers, E.H., Helgeson, H.C.: SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C. Comput. Geosci. 18, 899–947 (1992)

    Article  Google Scholar 

  25. Shock, E.L., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures. Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 °C. Geochim. Cosmochim. Acta 52, 2009–2036 (1989)

    Article  Google Scholar 

  26. Alberty, R.A.: Calculation of standard transformed Gibbs energies and standard transformed enthalpies of biochemical reactions. Archiv. Biochem. Biophys. 353, 116–130 (1998)

    Article  CAS  Google Scholar 

  27. Egan, E.P. Jr., Luff, B.B.: Heats of Formation of Phosphorus Oxides, Tennessee Valley Authority report AD429008, Progress Report for June 1, 1963 to November 30, 1963, Defense Technical Information Center, Ft. Belvoir, Virginia (1963)

  28. Holmes, W.S.: Heat of combustion of phosphorus and the enthalpies of formation of P4O10 and H3PO4. Trans. Faraday Soc. 58, 1916–1925 (1962)

    Article  CAS  Google Scholar 

  29. Archer, D.G.: Private communication (e-mail) to Rard, J.A., 16 June 2006

  30. Irving, R.J., McKerrell, H.: Standard heat of formation of aqueous orthophosphoric acid. Trans. Faraday Soc. 63, 2582–2585 (1967)

    Article  CAS  Google Scholar 

  31. Stephenson, C.C., Hooley, J.G.: The heat capacity of potassium dihydrogen phosphate from 15 to 300 °K. The anomaly at the Curie temperature. J. Am. Chem. Soc. 66, 1397–1401 (1944)

    Article  CAS  Google Scholar 

  32. Kogan, B.S., Chernyaev, V.S.: Thermodynamic properties of potassium phosphates. VI. The low-temperature heat capacity and entropy of potassium dihydrogen orthophosphate. Russ. J. Phys. Chem. 47, 288 (1973); this is an abstract of deposited document 4730-72 in VINITI, 24 August 1972

    Google Scholar 

  33. Stephenson, C.C., Zettlemoyer, A.C.: The heat capacity of ammonium dihydrogen phosphate from 15 to 300 °K. The anomaly at the Curie temperature. J. Am. Chem. Soc. 66, 1405–1408 (1944)

    Article  CAS  Google Scholar 

  34. Waterfield, C.G., Staveley, L.A.K.: Thermodynamic investigation of disorder in the hydrates of disodium hydrogen phosphate. Trans. Faraday Soc. 63, 2349–2356 (1967)

    Article  CAS  Google Scholar 

  35. Linke, W.F.: Solubilities: Inorganic and Metal-Organic Compounds, 4th edn., vol. II (1965), pp. 285–287, 729, 730, 1102, 1103

  36. Luff, B.B., Reed, R.B., Nash, R.H.: Low-temperature heat capacity and entropy of diammonium orthophosphate. J. Chem. Eng. Data 21, 418–419 (1976)

    Article  CAS  Google Scholar 

  37. Luff, B.B., Reed, R.B.: Low-temperature heat capacity and entropy of dipotassium orthophosphate. J. Chem. Eng. Data 23, 58–60 (1978)

    Article  CAS  Google Scholar 

  38. Eysseltová, J., Dirkse, T.P.: IUPAC–NIST Solubility Data Series 66. Ammonium phosphates. J. Phys. Chem. Ref. Data 27, 1289–1470 (1998), erratum 29, 1643–1644 (2000)

    Article  Google Scholar 

  39. Makovička, J., Salomon, M.: Alkali Metal Orthophosphates. Eysseltová, J., Dirkse, T.D. (eds.) Solubility Data Series, vol. 31. Pergamon Press, Oxford (1988)

    Google Scholar 

  40. Platford, R.F.: Thermodynamics of system H2O-Na2HPO4-(NH4)2HPO4 at 25 °C. J. Chem. Eng. Data 19, 166–168 (1974)

    Article  CAS  Google Scholar 

  41. Wendrow, B., Kobe, K.A.: The system sodium oxide–phosphorus pentoxide–water. Ind. Eng. Chem. 44, 1439–1448 (1952)

    Article  CAS  Google Scholar 

  42. Scatchard, G., Breckenridge, R.C.: Isotonic solutions. II. The chemical potential of water in aqueous solutions of potassium and sodium phosphates and arsenates at 25 °. J. Phys. Chem. 58, 596–602 (1954)

    Article  CAS  Google Scholar 

  43. Filippov, V.K., Charykova, M.V., Trofimov, Yu.M.: Thermodynamic study of the systems Na+,NH +4 ||SO 2−4 -H2O and Na+,NH +4 ||H2PO 4 -H2O at 25  °C. J. Appl. Chem. USSR 60, 237–241 (1987)

    Google Scholar 

  44. Egan, E.P. Jr., Luff, B.B.: Heats of solution of monoammonium and monopotassium phosphates at 25 °C. J. Chem. Eng. Data 8, 181–182 (1963)

    Article  CAS  Google Scholar 

  45. Filippov, V.K., Charykova, M.V.: Phase equilibria in the NH +4 ||Cl,SO 2−4 ,H2PO 4 -H2O system at 25 °C. Russ. J. Inorg. Chem. 35, 1824–1826 (1990)

    Google Scholar 

  46. Childs, C.W., Downes, C.J., Platford, R.F.: Thermodynamics of aqueous sodium and potassium dihydrogen orthophosphate solutions at 25 °C. Aust. J. Chem. 26, 863–866 (1973)

    Article  CAS  Google Scholar 

  47. Kabiri-Badr, M., Zafarani-Moattar, M.T.: Volumetric and isopiestic studies of (H2O + K2HPO4 + KH2PO4) at 25 °C. J. Chem. Eng. Data 40, 412–414 (1995)

    Article  CAS  Google Scholar 

  48. Stokes, J.M.: The osmotic and activity coefficients of sodium and potassium dihydrogen phosphate at 25 °. Trans. Faraday Soc. 41, 685–688 (1945)

    Article  CAS  Google Scholar 

  49. Bates, R.G., Acree, S.F.: H values of certain phosphate-chloride mixtures and the second dissociation constant of phosphoric acid from 0 ° to 60 °C. J. Res. Nat. Bureau Stand. 30, 129–155 (1943)

    CAS  Google Scholar 

  50. Ender, F., Teltschik, W., Schäfer, K.: Elektrochemische und thermodynamische Untersuchungen von Phosphatpuffern in Wasser-Methanolgemischen. Z. Elektrochem. 61, 775–781 (1957)

    CAS  Google Scholar 

  51. Grzybowski, A.K.: The standard potential of the calomel electrode and its application in accurate physicochemical measurements. II. Thermodynamics of the second ionization of orthophosphoric acid. J. Phys. Chem. 62, 555–559 (1958)

    Article  CAS  Google Scholar 

  52. Nims, L.F.: The second dissociation constant of phosphoric acid from 20 to 50 °. J. Am. Chem. Soc. 55, 1946–1951 (1933)

    Article  CAS  Google Scholar 

  53. Pandit, S.S., Jacob, K.T.: Thermodynamic properties of magnesium phosphate (Mg3P2O8)—Correction of data in recent compilations. Metal. Mater. Trans. 26A, 225–227 (1995)

    Article  CAS  Google Scholar 

  54. Schlesinger, M.E.: The thermodynamic properties of phosphorus and solid binary phosphides. Chem. Rev. 102, 4267–4301 (2002)

    Article  CAS  Google Scholar 

  55. Rard, J.A., Rand, M.H., Anderegg, G., Wanner, H.: Chemical Thermodynamics of Technetium. Sandino, M.C.A., Östhols, E. (eds.) Chemical Thermodynamics, vol. 3. North-Holland, Amsterdam (1999)

    Google Scholar 

  56. Holmes, H.F., Simonson, J.M., Mesmer, R.E.: Aqueous solutions of the mono-and di-hydrogenphosphate salts of sodium and potassium at elevated temperatures. Isopiestic results. J. Chem. Thermodyn. 32, 77–96 (2000)

    Article  CAS  Google Scholar 

  57. Mikulin, G.: Voprosy Fizicheskoi Khimii Elektrolytov. Khimya, St. Petersburg (1968), 417 pages

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Rard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rard, J.A., Wolery, T.J. The Standard Chemical-Thermodynamic Properties of Phosphorus and Some of its Key Compounds and Aqueous Species: An Evaluation of Differences between the Previous Recommendations of NBS/NIST and CODATA. J Solution Chem 36, 1585–1599 (2007). https://doi.org/10.1007/s10953-007-9205-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-007-9205-7

Keywords

Navigation