Skip to main content
Log in

Formation of polymeric filtration membranes by the combination of emulsion and breath figures approach

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Membrane filtration is one of the most significant water treatment advances in recent years. Its benefits on the membranes ability to keep undesired substances out of the permeate, while yet maintaining a sufficient water filtration flow. This is accomplished by presence of interconnected pores along the polymeric membrane with adequate pore size. The formation of membranes with suitable interconnected pores is still challenging. Therefore, in this research, we investigate the formation of pores in polymeric membranes using two pore formation methodologies simultaneously. The selected techniques were the breath figures approach and the emulsion technique, using poly methyl methacrylate as selected polymer. We characterized the pores in the polymeric membranes when using the individual techniques or in combination, including the average pore size, the porosity, and the water permeation flux. In addition, detailed SEM observations were included of the top, bottom, and cross-section of the membranes to identify the connectivity of the pores. The porosity of the membranes produced by the combination of the techniques is mainly caused by the coalescence of the droplets and the formation of multi-layer pores with an interconnection between them. The surfactant employed has a crucial role to forming interconnected pores, since it allows better stability of the water droplets on the membrane surface, as well as the formation of micelles in the bulk of the solvent/polymer solution. The breath figures–emulsion approach technique provides a new technique for the formation of polymeric membranes with characteristics suitable for water filtration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SEM:

Scanning electron microscopy

BF:

Breath figures

PolyHIPE:

Porous polymers from high internal phase

BFE:

Breath figures/emulsion technique

PMMA:

Poly(methyl methacrylate)

E:

Emulsion technique

TF:

Thin film

CMC:

Critical micelle concentration

ε:

Porosity

rm:

Mean pore radius

z0 :

Pore penetration in the polymer film

\(\gamma _{s}\) :

Solvent surface tension

\(\gamma _{w}\) :

Water surface tension

\(\gamma _{{w/s}}\) :

Water/solvent interfacial tension

References

  1. B. Saini, M.K. Sinha, A. Dey, Functionalized polymeric smart membrane for remediation of emerging environmental contaminants from industrial sources: synthesis, characterization and potential applications. Process. Saf. Environ. Prot. 161, 684–702 (2022). https://doi.org/10.1016/J.PSEP.2022.03.075

    Article  CAS  Google Scholar 

  2. H. Zeng, S. He, S.S. Hosseini et al., Emerging nanomaterial incorporated membranes for gas separation and pervaporation towards energetic-efficient applications. Adv. Membr. 2, 100015 (2022). https://doi.org/10.1016/J.ADVMEM.2021.100015

    Article  Google Scholar 

  3. P. Hariharan, S. Sundarrajan, G. Arthanareeswaran et al., Advancements in modification of membrane materials over membrane separation for biomedical applications-review. Environ. Res. 204, 112045 (2022). https://doi.org/10.1016/J.ENVRES.2021.112045

    Article  CAS  PubMed  Google Scholar 

  4. P. Escalé, L. Rubatat, L. Billon, M. Save, Recent advances in honeycomb-structured porous polymer films prepared via breath figures. Eur. Polym. J. 48, 1001–1025 (2012). https://doi.org/10.1016/j.eurpolymj.2012.03.001

    Article  CAS  Google Scholar 

  5. M. Huh, M. Gauthier, S. Yun, Il, Honeycomb structured porous films prepared from arborescent graft polystyrenes via the breath figures method. Polymer (Guildf) 107, 273–281 (2016). https://doi.org/10.1016/j.polymer.2016.11.032

    Article  CAS  Google Scholar 

  6. A.S. De León, S. Malhotra, M. Molina et al., Dendritic amphiphiles as additives for honeycomb-like patterned surfaces by breath figures: role of the molecular characteristics on the pore morphology. J. Colloid Interface Sci. 440, 263–271 (2015). https://doi.org/10.1016/j.jcis.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  7. J.A. Martens, J. Jammaer, S. Bajpe et al., Simple synthesis recipes of porous materials. Microporous Mesoporous Mater. 140, 2–8 (2011)

    Article  CAS  Google Scholar 

  8. G. Widawski, M. Rawiso, B. François, Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369, 387–389 (1994). https://doi.org/10.1038/369387a0

    Article  CAS  Google Scholar 

  9. M. Tang, K.S.S. Christie, D. Hou et al., Fabrication of a novel underwater-superoleophobic/hydrophobic composite membrane for robust anti-oil-fouling membrane distillation by the facile breath figures templating method. J. Membr. Sci. 617, 118666 (2021). https://doi.org/10.1016/j.memsci.2020.118666

    Article  CAS  Google Scholar 

  10. D.M. Wang, J.Y. Lai, Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Curr. Opin. Chem. Eng. 2, 229–237 (2013). https://doi.org/10.1016/j.coche.2013.04.003

    Article  Google Scholar 

  11. L.S. Wan, J.W. Li, B.B. Ke, Z.K. Xu, Ordered microporous membranes templated by breath figures for size-selective separation. J. Am. Chem. Soc. 134, 95–98 (2012). https://doi.org/10.1021/JA2092745/SUPPL_FILE/JA2092745_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  12. J.E. Aw, G.T.W. Goh, S. Huang et al., Non-close-packed breath figures via ion-partitioning-mediated self-assembly. Langmuir 31, 6688–6694 (2015). https://doi.org/10.1021/la504656j

    Article  CAS  PubMed  Google Scholar 

  13. A. de León, A. del Campo, M. Fernández-García et al., Fabrication of structured porous films by breath figures and phase separation processes: tuning the chemistry and morphology inside the pores using click chemistry. ACS Appl. Mater. Interfaces (2013). https://doi.org/10.1021/am400679r

    Article  Google Scholar 

  14. B. Zhao, J. Zhang, H. Wu et al., Fabrication of honeycomb ordered polycarbonate films using water droplets as template. Thin Solid Films 515, 3629–3634 (2007). https://doi.org/10.1016/j.tsf.2006.10.073

    Article  CAS  Google Scholar 

  15. H.T. Ham, I.J. Chung, Y.S. Choi et al., Macroporous polymer thin film prepared from temporarily stabilized water-in-oil emulsion. J. Phys. Chem. B (2006). https://doi.org/10.1021/jp0616361

    Article  PubMed  Google Scholar 

  16. J. Peng, Y. Han, Y. Yang, B. Li, The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer (Guildf) 45, 447–452 (2004). https://doi.org/10.1016/j.polymer.2003.11.019

    Article  CAS  Google Scholar 

  17. L.S. Wan, L.W. Zhu, Y. Ou, Z.K. Xu, Multiple interfaces in self-assembled breath figures. Chem. Commun. 50, 4024–4039 (2014). https://doi.org/10.1039/c3cc49826c

    Article  CAS  Google Scholar 

  18. J. Mansouri, E. Yapit, V. Chen, Polysulfone filtration membranes with isoporous structures prepared by a combination of dip-coating and breath figure approach. J. Membr. Sci. 444, 237–251 (2013). https://doi.org/10.1016/j.memsci.2013.05.022

    Article  CAS  Google Scholar 

  19. S. Liu, M. Cai, R. Deng et al., Fabrication of porous polymer microparticles with tunable pore size and density through the combination of phase separation and emulsion-solvent evaporation approach. Korea Aust. Rheol. J. 26, 63–71 (2014). https://doi.org/10.1007/s13367-014-0007-3

    Article  Google Scholar 

  20. N. Teo, Z. Gu, S.C. Jana, Polyimide-based aerogel foams, via emulsion-templating. Polymer (Guildf) 157, 95–102 (2018). https://doi.org/10.1016/j.polymer.2018.10.030

    Article  CAS  Google Scholar 

  21. G. Yazgan, A.M. Popa, R.M. Rossi et al., Tunable release of hydrophilic compounds from hydrophobic nanostructured fibers prepared by emulsion electrospinning. Polymer (Guildf) 66, 268–276 (2015). https://doi.org/10.1016/j.polymer.2015.04.045

    Article  CAS  Google Scholar 

  22. D. Mao, T. Li, H. Liu et al., Preparation of macroporous polyHIPE foams via radiation-induced polymerization at room temperature. Colloid Polym. Sci. 291, 1649–1656 (2013). https://doi.org/10.1007/s00396-013-2899-8

    Article  CAS  Google Scholar 

  23. I. Pulko, V. Smrekar, A. Podgornik et al., Emulsion templated open porous membranes for protein purification. Colloids Surf. A 1218, 2396–2401 (2017). https://doi.org/10.1016/j.chroma.2010.11.069

    Article  CAS  Google Scholar 

  24. Q. Jiang, A. Menner, A. Bismarck, One-pot synthesis of supported hydrogel membranes via emulsion templating. React. Funct. Polym. 114, 104–109 (2017). https://doi.org/10.1016/j.reactfunctpolym.2017.03.003

    Article  CAS  Google Scholar 

  25. M. Paljevac, P. Krajnc, Hierarchically porous poly(glycidyl methacrylate) through hard sphere and high internal phase emulsion templating. Polymer (Guildf) 209, 123064 (2020). https://doi.org/10.1016/j.polymer.2020.123064

    Article  CAS  Google Scholar 

  26. M. Srinivasarao, D. Collings, A. Philips, S. Patel, Three-dimensionally ordered array of air bubbles in a polymer film. Science 292, 79–83 (2001). https://doi.org/10.1126/science.1057887

    Article  CAS  PubMed  Google Scholar 

  27. H. Zahedi, M. Foroutan, Separation of water–oil mixture on poly methyl methacrylate surface using TiO2 nanoparticles via molecular dynamics simulation. Adsorption 25, 1019–1031 (2019). https://doi.org/10.1007/s10450-019-00119-0

    Article  CAS  Google Scholar 

  28. M. Cantarella, R. Sanz, M.A. Buccheri et al., Immobilization of nanomaterials in PMMA composites for photocatalytic removal of dyes, phenols and bacteria from water. J. Photochem. Photobiol. A 321, 1–11 (2016). https://doi.org/10.1016/j.jphotochem.2016.01.020

    Article  CAS  Google Scholar 

  29. L.S. Blachechen, J.O. Silva, L.R.S. Barbosa et al., Hofmeister effects on the colloidal stability of poly(ethylene glycol)-decorated nanoparticles. Colloid Polym. Sci. 290, 1537–1546 (2012). https://doi.org/10.1007/s00396-012-2684-0

    Article  CAS  Google Scholar 

  30. D.J. Islas, S.A. Medina Moreno, J. Noel, G. Rodríguez, Revisión/Review Propiedades, aplicaciones y producción de biotensoactivos (2010)

  31. A. Bolognesi, C. Mercogliano, S. Yunus et al., Self-organization of polystyrenes into ordered microstructured films and their replication by soft lithography. Langmuir 21, 3480–3485 (2005). https://doi.org/10.1021/la047427u

    Article  CAS  PubMed  Google Scholar 

  32. W.S. Koe, W.C. Chong, Y.L. Pang et al., Novel nitrogen and sulphur co-doped carbon quantum dots/titanium oxide photocatalytic membrane for in-situ degradation and removal of pharmaceutical compound. J. Water Process. Eng. 33, 101068 (2020). https://doi.org/10.1016/j.jwpe.2019.101068

    Article  Google Scholar 

  33. W. Li, B. Li, M. Meng et al., Bimetallic Au/Ag decorated TiO2 nanocomposite membrane for enhanced photocatalytic degradation of tetracycline and bactericidal efficiency. Appl. Surf. Sci 487, 1008–1017 (2019). https://doi.org/10.1016/j.apsusc.2019.05.162

    Article  CAS  Google Scholar 

  34. B. Boruah, P.K. Samantaray, G. Madras et al., Sustainable photocatalytic water remediation via dual active strongly coupled AgBiO3 on PVDF/PBSA membranes. Chem. Eng. J. 394, 124777 (2020). https://doi.org/10.1016/j.cej.2020.124777

    Article  CAS  Google Scholar 

  35. T.T. Cao, H. Yabu, D.S. Huh, Flower-like ordered porous array by combination of breath figure and layer-by-layer technique. Polymer (Guildf) 233, 124206 (2021). https://doi.org/10.1016/j.polymer.2021.124206

    Article  CAS  Google Scholar 

  36. F. Ravera, K. Dziza, E. Santini et al., Emulsification and emulsion stability: the role of the interfacial properties. Adv. Colloid Interface Sci. 288, 102344 (2021). https://doi.org/10.1016/j.cis.2020.102344

    Article  CAS  PubMed  Google Scholar 

  37. C. Das, K.A. Gebru, in Polymeric Membrane Synthesus, Modification, and Applications, Electro-spun and Phase Inverted Membranes, 1st edn. (CRC Press Taylor & Francis Group, 2019)

  38. J.C. Crittenden, R.R. Trussell, D.W. Hand, K.J. Howe, G. Tchobanoglous, MWH’s Water Treatment: Principles and Design: Principles and Design, 3rd edn. (John Wiley & Sons, Inc., 2012)

  39. B.K. Tripathi, P. Pandey, Breath figure templating for fabrication of polysulfone microporous membranes with highly ordered monodispersed porosity. J. Membr. Sci. 471, 201–210 (2014). https://doi.org/10.1016/j.memsci.2014.08.004

    Article  CAS  Google Scholar 

  40. R. Zhang, Y. Cai, X. Zhu et al., A novel photocatalytic membrane decorated with PDA/RGO/Ag3PO4 for catalytic dye decomposition. Colloids Surf. A 563, 68–76 (2019). https://doi.org/10.1016/j.colsurfa.2018.11.069

    Article  CAS  Google Scholar 

  41. Y. Ou, C.J. Lv, W. Yu et al., Fabrication of perforated isoporous membranes via a transfer-free strategy: enabling high-resolution separation of cells. ACS Appl. Mater. Interfaces 6, 22400–22407 (2014). https://doi.org/10.1021/AM506419Z/SUPPL_FILE/AM506419Z_SI_003.AVI

    Article  CAS  PubMed  Google Scholar 

  42. J.E. Aw, G. Tai, W. Goh et al., Non-close-packed breath figures via ion-partitioning-mediated self-assembly. Langmuir (2015). https://doi.org/10.1021/la504656j

    Article  PubMed  Google Scholar 

  43. S. Enders, H. Kahl, J. Winkelmann, Surface tension of the ternary system water + acetone + toluene. J. Chem. Eng. Data 52, 1072–1079 (2007). https://doi.org/10.1021/je7000182

    Article  CAS  Google Scholar 

  44. I. Pulko, V. Smrekar, A. Podgornik, P. Krajnc, Emulsion templated open porous membranes for protein purification. J. Chromatogr. A 1218, 2396–2401 (2011). https://doi.org/10.1016/j.chroma.2010.11.069

    Article  CAS  PubMed  Google Scholar 

  45. S. Mahdi, S. Shahabadi, S.A. Mousavi, D. Bastani, High flux electrospun nanofiberous membrane: preparation by statistical approach, characterization, and microfiltration assessment. J. Taiwan Inst. Chem. Eng. 59, 474–483 (2016). https://doi.org/10.1016/j.jtice.2015.07.033

    Article  CAS  Google Scholar 

  46. V.T. Bui, V.D. Dao, H.S. Choi, Transferable thin films with sponge-like porous structure via improved phase separation. Polymer (Guildf) 101, 184–191 (2016). https://doi.org/10.1016/j.polymer.2016.08.063

    Article  CAS  Google Scholar 

  47. M.S. Islam, J.R. McCutcheon, M.S. Rahaman, A high flux polyvinyl acetate-coated electrospun nylon 6/SiO2 composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling performance. J. Membr. Sci. 537, 297–309 (2017). https://doi.org/10.1016/j.memsci.2017.05.019

    Article  CAS  Google Scholar 

  48. A. Muñoz-Bonilla, M. Fernández-García, J. Rodríguez-Hernández, Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog. Polym. Sci. 39, 510–554 (2014). https://doi.org/10.1016/j.progpolymsci.2013.08.006

    Article  CAS  Google Scholar 

  49. E. Elele, Y. Shen, J. Tang et al., Mechanical properties of polymeric microfiltration membranes. J. Membr. Sci. (2019). https://doi.org/10.1016/j.memsci.2019.117351

    Article  Google Scholar 

  50. S. Nishimura, Y. Murakami, Facile preparation of porous polymeric sheets with different sizes of pores on both sides using spontaneous emulsification. Colloids Surf. A 614, 126149 (2021). https://doi.org/10.1016/j.colsurfa.2021.126149

    Article  CAS  Google Scholar 

  51. I. Capek, Degradation of kinetically-stable o/w emulsions. Adv. Colloid Interface Sci. 107, 125–155 (2004). https://doi.org/10.1016/S0001-8686(03)00115-5

    Article  CAS  PubMed  Google Scholar 

  52. S. Ariyaprakai, S.R. Dungan, Influence of surfactant structure on the contribution of micelles to Ostwald ripening in oil-in-water emulsions. J. Colloid Interface Sci. 343, 102–108 (2010). https://doi.org/10.1016/j.jcis.2009.11.034

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project received financial support provided by the National Council of Science and Technology (CONACyT-Mexico) Ciencia Basica 2017–2018 (Project No A1-S-42518) and the scholarship for doctoral studies (CVU 785260). The authors would like to thank to LANBAMA and LINAN national laboratories for sample characterization and to IPICyT for the use of facilities. Particularly we would like to thank Ana Iris Pena, Juan Pablo Rodas, and Nayeli Camarillo for their technical support.

Author information

Authors and Affiliations

Authors

Contributions

DL-V: Conceptualization, Methodology, Formal analysis, Investigation, Writing—Original Draft. GA-G, GJL-D, SA, and MCG-C: Formal analysis, Writing—Review & Editing, Supervision. FP-R: Conceptualization, Writing—Review & Editing, Funding acquisition. CN-D: Conceptualization, Methodology; Formal analysis, Resources, Writing—Review & Editing, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Cesar Nieto-Delgado.

Ethics declarations

Conflict of interest

This paper is approved by all authors and there is no conflict of interest for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Vega, D., Pérez-Rodríguez, F., Acosta-González, G. et al. Formation of polymeric filtration membranes by the combination of emulsion and breath figures approach. J Porous Mater 30, 1283–1294 (2023). https://doi.org/10.1007/s10934-022-01419-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01419-7

Keywords

Navigation