Skip to main content
Log in

A review on zeolite imidazole frameworks: synthesis, properties, and applications

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Zeolitic imidazolate frameworks (ZIFs) consist of transition metal ions (Zinc or Cobalt) and imidazolate (Im) linkers in tetrahedral coordination surrounded by nitrogen atoms from the five-membered imidazole ring serving as a bridging linker, i.e. a link connecting the metal centres in the three-dimensional framework. The crystal structures of ZIFs share the same topologies as those that can be found in aluminosilicate zeolites. ZIFs have advantages over zeolites such that the hybrid framework structures are expected to have more flexibility in surface modification. Due to their interesting properties such as high porosity, high surface area, exceptional thermal and chemical stability, ZIFs are very attractive materials with potential applications including gas sorption, gas separation, and catalysis. Over a decade tremendous work has been carried out to develop ZIFs in synthesis and its various applications. In this review, we have briefly composed the different methods for the synthesis of ZIFs such as solvent-based and solvent-free methods. In addition, its thermal and chemical properties and potential applications in the field of adsorption, separation, catalysis, sensing, and drug delivery have been summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

reproduced from reference number 6. b). Structure of framework ZIF-8. They are reproduced from reference number 7

Fig. 2
Fig. 3

Reproduced from reference number 3

Fig. 4
Fig. 5

Reproduced from reference number 43

Fig. 6
Fig. 7

Reproduced from reference number 49

Fig. 8

Reproduced from reference number 04

Fig. 9

Reproduced from reference number 48

Fig. 10

Reproduced from reference number 64

Fig. 11

Reproduced from the reference number 74

Fig. 12
Fig. 13

Reproduced from reference number 84

Fig. 14

Reproduced from the reference 83

Fig. 15

Reproduced from reference number 90

Fig. 16

Reproduced from the reference number 91

Fig. 17
Fig. 18

Reproduced from reference number 112

Fig. 19

Reproduced from the reference number 131

Fig. 20

Reproduced from reference number 133

Similar content being viewed by others

References

  1. Anh Phan, Christian J. Doonan, Fernando J. Uribe-Romo, Carolyn B. Knobler, Michael O’keeffe, and Omar M. Yaghi., Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. (2009). https://doi.org/10.1021/ar900116g

    Article  Google Scholar 

  2. S. Tanaka, K. Kida, M. Okita, Y. Ito, Y. Miyake, Size-controlled synthesis of zeolitic imidazolate framework-8 (ZIF-8) crystals in an aqueous system at room temperature. Chem. Lett. 41, 1337–1339 (2012)

    CAS  Google Scholar 

  3. B. Chen, Z. Yang, Y. Zhu, Y. Xia, Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J. Mater. Chem. A 2, 16811–16831 (2014)

    CAS  Google Scholar 

  4. S. Bhattacharjee, M.-S. Jang, H.-J. Kwon, W.-S. Ahn, Zeolitic imidazolate frameworks: synthesis, functionalization, and catalytic/adsorption applications. Catal. Surv. Asia 18, 101–127 (2014)

    CAS  Google Scholar 

  5. Yongyong Zhang, Ying Jia, Ming Li, Li’an Hou., Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework-8 crystals at room temperature. Sci. Rep. 8, 1–7 (2018)

    Google Scholar 

  6. H.-Y. Cho, J. Kim, S.-N. Kim, W.-S. Ahn, High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous Mesoporous Mater. 169, 180–184 (2013)

    CAS  Google Scholar 

  7. Kyo Sung Park, Zheng Ni, Adrien P. Côté, Jae Yong Choi, Rudan Huang, Fernando J. Uribe-Romo, Hee K. Chae, Michael O’Keeffe, Omar M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. National Acad. Sci. 103, 10186–10191 (2006)

    CAS  Google Scholar 

  8. Li Sze Lai, Yin Fong Yeong, Noraishah Che Ani, Kok Keong Lau, Azmi Mohd Shariff, Effect of synthesis parameters on the formation of zeolitic imidazolate framework 8 (ZIF-8) nanoparticles for CO2 adsorption. Part. Sci. Technol. 32, 520–528 (2014)

    CAS  Google Scholar 

  9. Kumari Shalini, Pramod Kumar Sharma, Nitin Kumar, Imidazole and its biological activities: A review. Der. Chemica. Sinica. 1, 36–47 (2010)

    CAS  Google Scholar 

  10. Jesse LC. Rowsell, Omar M. Yaghi, Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 73, 3–14 (2004)

    CAS  Google Scholar 

  11. N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012)

    CAS  PubMed  Google Scholar 

  12. G.E. Cmarik, M. Kim, S.M. Cohen, K.S. Walton, Tuning the adsorption properties of UiO-66 via ligand functionalization. Langmuir 28, 15606–15613 (2012)

    CAS  PubMed  Google Scholar 

  13. Y.-S. Li, F.-Y. Liang, H. Bux, A. Feldhoff, W.-S. Yang, J. Caro, Molecular sieve membrane: supported metal–organic framework with high hydrogen selectivity. Angew. Chem. 122, 558–561 (2010)

    Google Scholar 

  14. W. Morris, B. Leung, H. Furukawa, O.K. Yaghi, N. He, H. Hayashi, Y. Houndonougbo, M. Asta, B.B. Laird, O.M. Yaghi, A combined experimental− computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks. J. Am. Chem. Soc. 132, 11006–11008 (2010)

    CAS  PubMed  Google Scholar 

  15. Johan van den Bergh, Canan Gücüyener, Evgeny A. Pidko, Emiel JM. Hensen, Jorge Gascon, Freek Kapteijn, Understanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixtures. Chem. A Eur. J. 17, 8832–8840 (2011)

    Google Scholar 

  16. G. Lu, J.T. Hupp, Metal− organic frameworks as sensors: a ZIF-8 based Fabry− Pérot device as a selective sensor for chemical vapors and gases. J. Am. Chem. Soc. 132, 7832–7833 (2010)

    CAS  PubMed  Google Scholar 

  17. JeongYong Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009)

    CAS  PubMed  Google Scholar 

  18. C.G. Jones, V. Stavila, M.A. Conroy, P. Feng, B.V. Slaughter, C.E. Ashley, M.D. Allendorf, Versatile synthesis and fluorescent labeling of ZIF-90 nanoparticles for biomedical applications. ACS Appl. Mater. Interfaces. 8, 7623–7630 (2016)

    CAS  PubMed  Google Scholar 

  19. C.-Y. Sun, C. Qin, X.-L. Wang, G.-S. Yang, K.-Z. Shao, Y.-Q. Lan, Su. Zhong-Min, P. Huang, C.-G. Wang, E.-B. Wang, Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans. 41, 6906–6909 (2012)

    CAS  PubMed  Google Scholar 

  20. Bo. Wang, A.P. Côté, H. Furukawa, M. O’Keeffe, O.M. Yaghi, Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453, 207–211 (2008)

    CAS  PubMed  Google Scholar 

  21. F. Fu, B. Zheng, L.-H. Xie, Du. Huiling, Du. Shuangming, Z. Dong, Size-controllable synthesis of zeolitic imidazolate framework/carbon nanotube composites. Curr. Comput.-Aided Drug Des. 8, 367 (2018)

    Google Scholar 

  22. J. Yao, M. He, H. Wang, Strategies for controlling crystal structure and reducing usage of organic ligand and solvents in the synthesis of zeolitic imidazolate frameworks. CrystEngComm 17, 4970–4976 (2015)

    CAS  Google Scholar 

  23. N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, M. Tsapatsis, Zeolite membranes–a review and comparison with MOFs. Chem. Soc. Rev. 44, 7128–7154 (2015)

    CAS  PubMed  Google Scholar 

  24. Z. Zhang, Z.-Z. Yao, S. Xiang, B. Chen, Perspective of microporous metal–organic frameworks for CO2 capture and separation. Energy Environ. Sci. 7, 2868–2899 (2014)

    CAS  Google Scholar 

  25. Bouëssel du Bourg, Aurélie U. Lila, Anne Boutin Ortiz, François-Xavier. Coudert, Thermal and mechanical stability of zeolitic imidazolate frameworks polymorphs. APL Mater. 2, 124110 (2014)

    Google Scholar 

  26. X.-C. Huang, Y.-Y. Lin, J.-P. Zhang, X.-M. Chen, Ligand-directed strategy for zeolite-type metal–organic frameworks: zinc (II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed. 45, 1557–1559 (2006)

    CAS  Google Scholar 

  27. A.F. Gross, E. Sherman, J.J. Vajo, Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Trans. 41, 5458–5460 (2012)

    CAS  PubMed  Google Scholar 

  28. T. Yang, T.-S. Chung, Room-temperature synthesis of ZIF-90 nanocrystals and the derived nano-composite membranes for hydrogen separation. J. Mater. Chem. A 1, 6081–6090 (2013)

    CAS  Google Scholar 

  29. J. Cravillon, C.A. Schröder, H. Bux, A. Rothkirch, J. Caro, M. Wiebcke, Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm 14, 492–498 (2012)

    CAS  Google Scholar 

  30. Kullaiah Byrappa, Masahiro Yoshimura, Handbook of hydrothermal technology (William Andrew, Norwich, 2012)

    Google Scholar 

  31. Y. Pan, Y. Liu, G. Zeng, L. Zhao, Z. Lai, Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 47, 2071–2073 (2011)

    CAS  Google Scholar 

  32. J. Qian, F. Sun, L. Qin, Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater. Lett. 82, 220–223 (2012)

    CAS  Google Scholar 

  33. N.A.H.M. Nordin, A.F. Ismail, A. Mustafa, P.S. Goh, D. Rana, T. Matsuura, Aqueous room temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with various concentrations of triethylamine. RSC Adv. 4, 33292–33300 (2014)

    CAS  Google Scholar 

  34. Imran Ullah Khan, Mohd Hafiz Dzarfan. Othman, A.F. Asim Jilani, Haslenda Hashim Ismail, Juhana Jaafar, Mukhlis A. Rahman, Ghani Ur Rehman, Economical, environmental friendly synthesis, characterization for the production of zeolitic imidazolate framework-8 (ZIF-8) nanoparticles with enhanced CO2 adsorption. Arab. J. Chem. 11, 1072–1083 (2018)

    CAS  Google Scholar 

  35. Y. Pan, D. Heryadi, F. Zhou, L. Zhao, G. Lestari, Su. Haibin, Z. Lai, Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm 13, 6937–6940 (2011)

    CAS  Google Scholar 

  36. W.-W. Xiong, Q. Zhang, Surfactants as promising media for the preparation of crystalline inorganic materials. Angew. Chem. Int. Ed. 54, 11616–11623 (2015)

    CAS  Google Scholar 

  37. B. Chen, Z. Yang, Y. Zhu, Y. Xia, Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J. Mater. Chem. A2, 16811–16831 (2014)

    Google Scholar 

  38. S.K. Nune, P.K. Thallapally, A. Dohnalkova, C. Wang, J. Liu, G.J. Exarhos, Synthesis and properties of nano zeolitic imidazolate frameworks. Chem. Commun. 46, 4878–4880 (2010)

    CAS  Google Scholar 

  39. J. Yao, M. He, K. Wang, R. Chen, Z. Zhong, H. Wang, High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature. CrystEngComm 15, 3601–3606 (2013)

    CAS  Google Scholar 

  40. T. Xing, Y. Lou, Q. Bao, J. Chen, Surfactant-assisted synthesis of ZIF-8 nanocrystals in aqueous solution via microwave irradiation. CrystEngComm 16, 8994–9000 (2014)

    CAS  Google Scholar 

  41. Z. Ni, R.I. Masel, Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 128, 12394–12395 (2006)

    CAS  PubMed  Google Scholar 

  42. H. Bux, F. Liang, Y. Li, J. Cravillon, M. Wiebcke, J. Caro, Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 131, 16000–16001 (2009)

    CAS  PubMed  Google Scholar 

  43. V.V. Butova, A.P. Budnik, E.A. Bulanova, A.V. Soldatov, New microwave-assisted synthesis of ZIF-8. Mendeleev Commun. 1, 43–44 (2016)

    Google Scholar 

  44. Gesley AV. Martins, Peter J. Byrne, Phoebe Allan, Simon J. Teat, Alexandra MZ. Slawin, Yang Li, Russell E. Morris, The use of ionic liquids in the synthesis of zinc imidazolate frameworks. Dalton Trans. 39, 1758–1762 (2010)

    CAS  PubMed  Google Scholar 

  45. L. Yang, Lu. Huimin, Microwave-assisted ionothermal synthesis and characterization of zeolitic imidazolate framework-8. Chin. J. Chem. 30, 1040–1044 (2012)

    CAS  Google Scholar 

  46. B. Seoane, J.M. Zamaro, C. Tellez, J. Coronas, Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20). CrystEngComm 14, 3103–3107 (2012)

    CAS  Google Scholar 

  47. W.-J. Son, J. Kim, J. Kim, W.-S. Ahn, Sonochemical synthesis of MOF-5. Chem. Commun. 47, 6336–6338 (2008)

    Google Scholar 

  48. Imteaz Ahmed, Jaewoo Jeon, Nazmul Abedin Khan, Sung Hwa Jhung, Synthesis of a metal–organic framework, iron-benezenetricarboxylate, from dry gels in the absence of acid and salt. Crystal Growth Design 12, 5878–5881 (2012)

    CAS  Google Scholar 

  49. M.J. Cliffe, C. Mottillo, R.S. Stein, D.-K. Bučar, T. Friščić, Accelerated aging: a low energy, solvent-free alternative to solvothermal and mechanochemical synthesis of metal–organic materials. Chem. Sci. 3, 2495–2500 (2012)

    CAS  Google Scholar 

  50. Patrick J. Beldon, László. Fábián, Robin S. Stein, A. Thirumurugan, Anthony K. Cheetham, Tomislav Friščić, Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angew. Chem. 122, 9834–9837 (2010)

    Google Scholar 

  51. Kyo Sung Park, Zheng Ni, Adrien P. Côté, Jae Yong Choi, Rudan Huang, Fernando J. Uribe-Romo, Hee K. Chae, Michael O’keeffe, Omar M. Yaghi, ZIFs-first synthesis. Proc. Natl. Acad. Sci 103, 10186–10191 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. N. Lu, F. Zhou, H. Jia, H. Wang, B. Fan, R. Li, Dry-gel conversion synthesis of Zr-based metal–organic frameworks. Ind. Eng. Chem. Res. 56, 14155–14163 (2017)

    CAS  Google Scholar 

  53. Qi. Shi, Z. Chen, Z. Song, J. Li, J. Dong, Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors. Angew. Chem. 123, 698–701 (2011)

    Google Scholar 

  54. Stuart L. James, Christopher J. Adams, Carsten Bolm, Dario Braga, Paul Collier, Tomislav Friščić, Fabrizia Grepioni et al., Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41, 413–447 (2012)

    CAS  PubMed  Google Scholar 

  55. C. Mottillo, Lu. Yuneng, M.-H. Pham, M.J. Cliffe, T.-O. Do, T. Friščić, Mineral neogenesis as an inspiration for mild, solvent-free synthesis of bulk microporous metal–organic frameworks from metal (Zn, Co) oxides. Green Chem. 15, 2121–2131 (2013)

    CAS  Google Scholar 

  56. J. Cravillon, S. Münzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater. 21, 1410–1412 (2009)

    CAS  Google Scholar 

  57. Yang Liu, Zhifeng Liu, Danlian Huang, Min Cheng, Guangming Zeng, Cui Lai, Chen Zhang et al., Metal or metal-containing nanoparticle@ MOF nanocomposites as a promising type of photocatalyst. Coord. Chem. Rev. 388, 63–78 (2019)

    CAS  Google Scholar 

  58. K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O′ Keeffe, OM Yaghi. Proc. National Acad. Sci. USA 103, 10186 (2006)

    CAS  Google Scholar 

  59. H. Wang, L.R. Grabstanowicz, H.M. Barkholtz, D. Rebollar, Z.B. Kaiser, D. Zhao, B.-H. Chen, D.-J. Liu, Impacts of imidazolate ligand on performance of zeolitic-imidazolate framework-derived oxygen reduction catalysts. ACS Energy Lett. 4, 2500–2507 (2019)

    CAS  Google Scholar 

  60. Joshua O. Ighalo, Selvasembian Rangabhashiyam, Comfort Abidemi Adeyanju, Samuel Ogunniyi, Adewale George Adeniyi, Chinenye Adaobi Igwegbe, Zeolitic Imidazolate Frameworks (ZIFs) for Aqueous Phase Adsorption–A Review. J. Ind. Eng. Chem. (2021). https://doi.org/10.1016/j.jiec.2021.09.029

    Article  Google Scholar 

  61. Y.-R. Lee, M.-S. Jang, H.-Y. Cho, H.-J. Kwon, S. Kim, W.-S. Ahn, ZIF-8: A comparison of synthesis methods. Chem. Eng. J. 271, 276–280 (2015)

    CAS  Google Scholar 

  62. M. Jian, B. Liu, G. Zhang, R. Liu, X. Zhang, Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloids Surf. A 465, 67–76 (2015)

    CAS  Google Scholar 

  63. Surendra Sasi Jampa, Ashish Prabhudas Kumar, Rajesh Vanshpati Unnarkat, Sivakumar Pandian, Manish Kumar Sinha, Swapnil Dharaskar, Adsorption and recyclability aspects of humic acid using nano-ZIF-8 adsorbent. Environ. Technol. Innov. 19, 100927 (2020)

    Google Scholar 

  64. Nazmul Abedin Khan, Beom K. Jung, Zubair Hasan, Sung Hwa Jhung, Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal–organic frameworks. J. Hazard. Mater. 282, 194–200 (2015)

    CAS  PubMed  Google Scholar 

  65. J.-Q. Jiang, C.-X. Yang, X.-P. Yan, Zeolitic imidazolate framework-8 for fast adsorption and removal of benzotriazoles from aqueous solution. ACS Appl. Mater. Interfaces. 5, 9837–9842 (2013)

    CAS  PubMed  Google Scholar 

  66. Na. Li, L. Zhou, X. Jin, G. Owens, Z. Chen, Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework. J. Hazard. Mater. 366, 563–572 (2019)

    CAS  PubMed  Google Scholar 

  67. Yi. Feng, Yu. Li, Xu. Minying, S. Liu, J. Yao, Fast adsorption of methyl blue on zeolitic imidazolate framework-8 and its adsorption mechanism. RSC Adv. 6, 109608–109612 (2016)

    CAS  Google Scholar 

  68. K.-Y. Lin, H.-A. Chang, Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere 139, 624–631 (2015)

    CAS  PubMed  Google Scholar 

  69. Yanfang Li, Xinlong Yan, Hu. Xiaoyan, Rui Feng, Min Zhou, Trace pyrolyzed ZIF-67 loaded activated carbon pellets for enhanced adsorption and catalytic degradation of Rhodamine B in water. Chem. Eng. J. 375, 122003 (2019)

    CAS  Google Scholar 

  70. M. Zhu, D. Srinivas, S. Bhogeswararao, P. Ratnasamy, M.A. Carreon, Catalytic activity of ZIF-8 in the synthesis of styrene carbonate from CO2 and styrene oxide. Catal. Commun. 32, 36–40 (2013)

    CAS  Google Scholar 

  71. P.A. Jacobs, E.M. Flanigen, J. C., Jansen, and Herman van Bekkum (Elsevier, Introduction to zeolite science and practice, 2001)

    Google Scholar 

  72. Qilei Song, S.K. Nataraj, Mina V. Roussenova, Jin Chong Tan, David J. Hughes, Wei Li, Pierre Bourgoin et al., Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci. 5, 8359–8369 (2012)

    CAS  Google Scholar 

  73. Haiqian Lian, Eryue Song, Bin Bao, Yu. Wenhe Yang, Yichang Pan Yang, Ju. Shengui, Highly steam-stable CHA-type zeolite imidazole framework ZIF-302 membrane for hydrogen separation. Sep Purif Technol (2021). https://doi.org/10.1016/j.seppur.2021.119875

    Article  Google Scholar 

  74. Y. Zhang, Y. Tong, X. Li, S. Guo, H. Zhang, Xi. Chen, K. Cai, L. Cheng, W. He, Pebax mixed-matrix membrane with highly dispersed ZIF-8@ CNTs to enhance CO2/N2 separation. ACS Omega. 6, 18566–18575 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  75. P. Krokidas, S. Moncho, E.N. Brothers, I.G. Economou, Defining new limits in gas separations using modified ZIF systems. ACS Appl. Mater. Interfaces. 12, 20536–20547 (2020)

    CAS  PubMed  Google Scholar 

  76. Víctor Manuel. Melgar, Jinsoo Kim Aceituno, Mohd Roslee Othman, Zeolitic imidazolate framework membranes for gas separation: A review of synthesis methods and gas separation performance. J. Ind. Eng. Chem. 28, 1–15 (2015)

    Google Scholar 

  77. G. Zhong, D. Liu, J. Zhang, The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts. J. Mater. Chem. A 6, 1887–1899 (2018)

    CAS  Google Scholar 

  78. X. Gong, Y. Wang, T. Kuang, ZIF-8-based membranes for carbon dioxide capture and separation. ACS Sustain. Chem. Eng. 5, 11204–11214 (2017)

    CAS  Google Scholar 

  79. Prabakaran Shankar, John Bosco Balaguru. Rayappan, Gas sensing mechanism of metal oxides: The role of ambient atmosphere, type of semiconductor and gases-A review. Sci. Lett. J. 4, 126 (2015)

    Google Scholar 

  80. G. Lu, J.T. Hupp, Metal- organic frameworks as sensors: a ZIF-8 based Fabry- Pérot device as a selective sensor for chemical vapors and gases. J. Am. Chem. Soc. 132, 7832–7833 (2010)

    CAS  PubMed  Google Scholar 

  81. S.T. Meek, J.A. Greathouse, M.D. Allendorf, Metal- organic frameworks: A rapidly growing class of versatile nanoporous materials. Adv. Mater. 23, 249–267 (2011)

    CAS  PubMed  Google Scholar 

  82. E.-X. Chen, H. Yang, J. Zhang, Zeolitic imidazolate framework as formaldehyde gas sensor. Inorg. Chem. 53, 5411–5413 (2014)

    CAS  PubMed  Google Scholar 

  83. S. Liu, Z. Xiang, Hu. Zan, X. Zheng, D. Cao, Zeolitic imidazolate framework-8 as a luminescent material for the sensing of metal ions and small molecules. J. Mater. Chem. 21, 6649–6653 (2011)

    CAS  Google Scholar 

  84. Lien TL. Nguyen, Ky. K.A. Le, Hien X. Truong, Nam TS. Phan, Metal–organic frameworks for catalysis: the Knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst. Catal. Sci. Technol. 2, 521–528 (2012)

    CAS  Google Scholar 

  85. Lien TL. Nguyen, K.A. LE Ky, T.S. Nam, A zeolite imidazolate framework ZIF-8 catalyst for friedel-crafts acylation. Chin. J. Catal. 33, 688–696 (2012)

    CAS  Google Scholar 

  86. Y. Wang, Y. Zeng, Wu. Xingchun, Mu. Manman, L. Chen, A novel Pd-Ni bimetallic synergistic catalyst on ZIF-8 for Sonogashira coupling reaction. Mater. Lett. 220, 321–324 (2018)

    CAS  Google Scholar 

  87. M. Zhang, Ya. Gao, C. Li, C. Liang, Chemical vapor deposition of Pd (C3H5) (C5H5) for the synthesis of reusable Pd@ ZIF-8 catalysts for the Suzuki coupling reaction. Chin. J. Catal. 36, 588–594 (2015)

    CAS  Google Scholar 

  88. Kyung Mi Bhin, Jose Tharun, Kuruppathparambil Roshith Roshan, Dong-Woo. Kim, Yongchul Chung, Dae-Won. Park, Catalytic performance of zeolitic imidazolate framework ZIF-95 for the solventless synthesis of cyclic carbonates from CO2 and epoxides. J. CO2 Util. 17, 112–118 (2017)

    CAS  Google Scholar 

  89. Ryan Oozeerally, Shivendra DK. Ramkhelawan, David L. Burnett, Christiaan HL. Tempelman, Volkan Degirmenci, ZIF-8 metal organic framework for the conversion of glucose to fructose and 5-Hydroxymethyl furfural. Catalysts 9, 812 (2019)

    CAS  Google Scholar 

  90. Tuan T. Dang, Yinghuai Zhu, Joyce S. Y. Ngiam, Subhash C. Ghosh, Anqi Chen, Abdul M. Seayad, Palladium nanoparticles supported on ZIF-8 as an efficient heterogeneous catalyst for aminocarbonylation. ACS Catal. 3, 1406–1410 (2013)

    CAS  Google Scholar 

  91. M. Zhang, Y. Yang, C. Li, Q. Liu, C.T. Williams, C. Liang, PVP–Pd@ ZIF-8 as highly efficient and stable catalysts for selective hydrogenation of 1, 4-butynediol. Catal. Sci. Technol. 4, 329–332 (2014)

    CAS  Google Scholar 

  92. P. Wang, J. Zhao, X. Li, Y. Yang, Q. Yang, C. Li, Assembly of ZIF nanostructures around free Pt nanoparticles: efficient size-selective catalysts for hydrogenation of alkenes under mild conditions. Chem. Commun. 49, 3330–3332 (2013)

    CAS  Google Scholar 

  93. C. Avci, M.L.D. Marco, C. Byun, J. Perrin, M. Scheel, C. Boissière, M. Faustini, Metal–organic framework photonic balls: single object analysis for local thermal probing. Adv. Mater. 33, 2104450 (2021)

    CAS  Google Scholar 

  94. Wenjuan Wang, Shuang Chen, Eduardo Guisasola Cal, Marta Martínez Moro, Sergio Moya, Emerson Coy, Changlong Wang, Jean-René. Hamon, Didier Astruc, ZIF-8-based vs. ZIF-8-derived Au and Pd nanoparticles as efficient catalysts for the Ullmann homocoupling reaction. Chem. Front Inorg (2020). https://doi.org/10.1039/D0QI00831A

    Article  Google Scholar 

  95. K. Alkanad, A. Hezam, G.C. Sujay Shekar, Q.A. Drmosh, A.L.A. Kala, M.Q.A. AL-Gunaid, N.K. Lokanath, Magnetic recyclable α-Fe2 O3–Fe3O4/Co3O4–CoO nanocomposite with a dual Z-scheme charge transfer pathway for quick photo-Fenton degradation of organic pollutants. Catal. Sci. Technol. 11, 3084–3097 (2021)

    CAS  Google Scholar 

  96. Rashmi Veeranna, Pramila Shivamurthy, Mallikarjunaswamy Chandrashekaraiah, Nithin Kundachira Subramanni, Sangamesha Madanahalli Ankanathappa, Shaukath Ara Khanum, Lakshmi Ranganatha Venkataravanappa, Metal nanoparticles as emerging catalysts: A mini review. Int. J. Nano Dimens Spring. 12, 90–97 (2021)

    CAS  Google Scholar 

  97. Ranganatha, V. Lakshmi, K. S. Nithin, Shaukath Ara Khanum, G. Nagaraju, and C. Mallikarjunaswamy. "Zinc oxide nanoparticles: A significant review on synthetic strategies, characterization and applications." In AIP Conference Proceedings, vol. 2162, no. 1, p. 020089. AIP Publishing LLC, 2019.

  98. Salma Kouser, Abdo Hezam, K. Byrappa, Shaukath Khanum., Sunlight-assisted synthesis of cerium (IV) oxide nanostructure with enhanced photocatalytic activity. Optik 245, 167236 (2021)

    CAS  Google Scholar 

  99. Khaled Alkanad, Abdo Hezam, Qasem Ahmed Drmosh, Sujay Shekar Ganganakatte. Chandrashekar, Abeer A. AlObaid, Ismail Warad, Mohammed Abdullah Bajiri, Lokanath Neratur Krishnappagowda, Construction of Bi2S3/TiO2/MoS2 S-scheme heterostructure with a switchable charge migration pathway for selective CO2 reduction. Solar RRL (2021). https://doi.org/10.1002/solr.202100501

    Article  Google Scholar 

  100. H. Dai, B. Xia, L. Wen, Du. Cheng, Su. Jun, W. Luo, G. Cheng, Synergistic catalysis of AgPd@ ZIF-8 on dehydrogenation of formic acid. Appl. Catal. B 165, 57–62 (2015)

    CAS  Google Scholar 

  101. G.C.S. Shekar, K. Alkanad, A. Hezam, A. Alsalme, N. Al-Zaqri, N.K. Lokanath, Enhanced photo-Fenton activity over a sunlight-driven ignition synthesized α-Fe2O3-Fe3O4/CeO2 heterojunction catalyst enriched with oxygen vacancies. J. Mol. Liq. 335, 116186 (2021)

    Google Scholar 

  102. T.T. Isimjan, H. Kazemian, S. Rohani, A.K. Ray, Photocatalytic activities of Pt/ZIF-8 loaded highly ordered TiO2 nanotubes. J. Mater. Chem. 20, 10241–10245 (2010)

    CAS  Google Scholar 

  103. C. Dey, R. Banerjee, Controlled synthesis of a catalytically active hybrid metal-oxide incorporated zeolitic imidazolate framework (MOZIF). Chem. Commun. 49, 6617–6619 (2013)

    CAS  Google Scholar 

  104. X.-J. Sun, D.-D. Yang, H. Dong, X.-B. Meng, J.-L. Sheng, X. Zhang, J.-Z. Wei, F.-M. Zhang, ZIF-derived CoP as a cocatalyst for enhanced photocatalytic H 2 production activity of gC 3 N 4. Sustain. Energy Fuels 2, 1356–1361 (2018)

    CAS  Google Scholar 

  105. Yanbing Li, Zhiliang Jin, Tiansheng Zhao, Performance of ZIF-67–Derived fold polyhedrons for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 382, 123051 (2020)

    CAS  Google Scholar 

  106. L.R.M. Ferraz, A.É.G.A. Tabosa, D.D.S.S. Nascimento, A.S. Ferreira, V.A.W. Sales, J.Y.R. Silva, S.A. Júnior, L.A. Rolim, J.J.S. Pereira, P.J. Rolim-Neto, ZIF-8 as a promising drug delivery system for benznidazole: development, characterization, in vitro dialysis release and cytotoxicity. Sci. Rep. 10, 1–14 (2020)

    Google Scholar 

  107. Huaiyuan Zhao, Hengshu Ye, Jun Zhou, Guping Tang, Zhaoyin Hou, Hongzhen Bai, Montmorillonite-enveloped zeolitic imidazolate framework as a nourishing oralnano-platform for gastrointestinal drug delivery. ACS Appl. Mater. Interfaces 12, 49431–49441 (2020)

    CAS  PubMed  Google Scholar 

  108. Romy Ettlinger, Natalia Moreno, Dirk Volkmer, Kornelius Kerl, Hana Bunzen, Zeolitic imidazolate framework- 8 as pH- sensitive nanocarrier for “arsenic trioxide” drug delivery. Chemistry (Weinheim an der Bergstrasse, Germany) 25, 13189 (2019)

    CAS  PubMed Central  Google Scholar 

  109. C. Adhikari, A. Das, A. Chakraborty, Zeolitic imidazole framework (ZIF) nanospheres for easy encapsulation and controlled release of an anticancer drug doxorubicin under different external stimuli: a way toward smart drug delivery system. Mol. Pharm. 12, 3158–3166 (2015)

    CAS  PubMed  Google Scholar 

  110. M. Gomar, S. Yeganegi, Adsorption of 5-fluorouracil, hydroxyurea and mercaptopurine drugs on zeolitic imidazolate frameworks (ZIF-7, ZIF-8 and ZIF-9). Microporous Mesoporous Mater. 252, 167–172 (2017)

    CAS  Google Scholar 

  111. H.-P. Jing, C.-C. Wang, Y.-W. Zhang, P. Wang, R. Li, Photocatalytic degradation of methylene blue in ZIF-8. RSC Adv. 4, 54454–54462 (2014)

    CAS  Google Scholar 

  112. Lik H. Wee, Tristan Lescouet, Jayashree Ethiraj, Francesca Bonino, Roxana Vidruk, Eva Garrier, Dirk Packet et al., Hierarchical zeolitic imidazolate framework-8 catalyst for monoglyceride synthesis. ChemCatChem 5, 3562–3566 (2013)

    CAS  Google Scholar 

  113. D. Zhang, B. Wang, L. Yan, Lu. Ruixiao Gao, Z.X. Liu, X. Yan, Y. Li, L. Chen, Selective hydrogenation of cinnamaldehyde over magnetic flower-like carbonaceous Pd catalysts. New J. Chem. 44, 20367–20374 (2020)

    CAS  Google Scholar 

  114. Wenjuan Wang, Shuang Chen, Eduardo Guisasola Cal, Marta Martínez Moro, Sergio Moya, Emerson Coy, Changlong Wang, Jean-René. Hamon, Didier Astruc, ZIF-8-based vs. ZIF-8-derived Au and Pd nanoparticles as efficient catalysts for the Ullmann homocoupling reaction. Inorg. Chem. Front. 7, 3945–3952 (2020)

    CAS  Google Scholar 

  115. M. Zahmakiran, Iridium nanoparticles stabilized by metal organic frameworks (IrNPs@ ZIF-8): synthesis, structural properties and catalytic performance. Dalton Trans. 41, 12690–12696 (2012)

    CAS  PubMed  Google Scholar 

  116. M. Yurderi, A. Bulut, M. Zahmakiran, M. Gülcan, S. Özkar, Ruthenium (0) nanoparticles stabilized by metal-organic framework (ZIF-8): Highly efficient catalyst for the dehydrogenation of dimethylamine-borane and transfer hydrogenation of unsaturated hydrocarbons using dimethylamine-borane as hydrogen source. Appl. Catal. B 160, 534–541 (2014)

    Google Scholar 

  117. M. Liu, B. Fan, X. Shi, R. Li, Ru/ZIF-8 with a chiral modifier for asymmetric hydrogenation of acetophenone. Catal. Commun. 42, 20–24 (2013)

    Google Scholar 

  118. Jingze Sun, Liya Semenchenko, Woo Taik Lim, Maria Fernanda Ballesteros. Rivas, Victor Varela-Guerrero, Hae-Kwon. Jeong, Facile synthesis of Cd-substituted zeolitic-imidazolate framework Cd-ZIF-8 and mixed-metal CdZn-ZIF-8. Microporous Mesoporous Mater. 264, 35–42 (2018)

    CAS  Google Scholar 

  119. K.-Y. Lin, S.-Y. Chen, Catalytic reduction of bromate using ZIF-derived nanoscale cobalt/carbon cages in the presence of sodium borohydride. ACS Sustain. Chem. Eng. 3, 3096–3103 (2015)

    CAS  Google Scholar 

  120. Thanh Truong, Tam M. Hoang, Chung K. Nguyen, Quynh TN. Huynh, Nam TS. Phan, Expanding applications of zeolite imidazolate frameworks in catalysis: synthesis of quinazolines using ZIF-67 as an efficient heterogeneous catalyst. Rsc Adv. 5, 24769–24776 (2015)

    CAS  Google Scholar 

  121. Viet D. Nguyen, Chung K. Nguyen, Kien N. Tran, Thach N. Tu, Tung T. Nguyen, Ha. V. Dang, Thanh Truong, Nam TS. Phan, Zeolite imidazolate frameworks in catalysis: Synthesis of benzimidazoles via cascade redox condensation using Co-ZIF-67 as an efficient heterogeneous catalyst. Appl. Catal. A Gen. 555, 20–26 (2018)

    CAS  Google Scholar 

  122. A. Zhou, R.-M. Guo, J. Zhou, Y. Dou, Ya. Chen, J.-R. Li, Pd@ ZIF-67 derived recyclable Pd-based catalysts with hierarchical pores for high-performance heck reaction. ACS Sustain. Chem. Eng. 6, 2103–2111 (2018)

    CAS  Google Scholar 

  123. B. Lü, W. Qi, M. Luo, Q. Liu, L. Guo, Fischer–Tropsch synthesis: ZIF-8@ ZIF-67-Derived cobalt nanoparticle-embedded nanocage catalysts. Ind. Eng. Chem. Res. 59, 12352–12359 (2020)

    Google Scholar 

Download references

Acknowledgements

One of the authors SK is indebted to the Department of Minority, Government of Karnataka for providing minority fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaukath Ara Khanum.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouser, S., Hezam, A., Khadri, M.J.N. et al. A review on zeolite imidazole frameworks: synthesis, properties, and applications. J Porous Mater 29, 663–681 (2022). https://doi.org/10.1007/s10934-021-01184-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01184-z

Keywords

Navigation