Skip to main content
Log in

Heat, pH Induced Aggregation and Surface Hydrophobicity of S. cerevesiae Ssa1 Protein

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Heat shock protein 70 is a conserved protein among organisms. Hsp70 helps substrate proteins to fold correctly. Unfolded substrate proteins increase the probability of the aggregate formation. High level recombinant protein expression in biotechnology often leads insoluble inclusion bodies. To prevent aggregation and to obtain high levels of soluble proteins, Hsp co-expression with desired recombinant protein in yeast becomes a popular method. For this purpose, S. cerevesiae cytosolic Hsp70 (Ssa1) biochemical properties were characterized. Alteration of Ssa1 structure between ATP- and ADP-bound states regulates its function. Therefore, conformation-dependent Ssa1 hydrophobicity and as a result aggregation may also play a key role in Ssa1 function. Therefore, a combination of FTIR, acrylamide quenching, and ANS was used to investigate the effect of nucleotide binding on the structure of Ssa1. Ssa1 secondary structure alterations and hydrophobic properties in aqueous solutions with differing ionic strengths and temperature were also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Hsp:

Heat shock protein

FTIR:

Fourier transform infrared spectroscopy

ANS:

8-Anilino-2-naphthyl sulfonic acid

References

  1. Banecki B, Zylicz M, Bertoli E, Tanfani F (1992) J Biol Chem 267:25051–25058

    CAS  Google Scholar 

  2. Bhattacharya A, Kurochkin AV, Yip GN, Zhang Y, Bertelsen EB, Zuiderweg ER (2009) J Mol Biol 388:475–490

    Article  CAS  Google Scholar 

  3. Borges JC, Ramos CH (2006) Arch Biochem Biophys 452:46–54

    Article  CAS  Google Scholar 

  4. Buchberger A, Schröder H, Büttner M, Valencia A, Bukau B (1994) Nat Struct Biol 1:95–101

    Article  CAS  Google Scholar 

  5. Buchberger A, Theyssen H, Schröder H, McCarty JS, Virgallita G, Milkereit P, Reinstein J, Bukau B (1995) J Biol Chem 270:16903–16910

    Article  CAS  Google Scholar 

  6. Bukau B (1999) Molecular chaperones and folding catalysis. Harwood academic publishers, Amsterdam, pp 139–173

    Google Scholar 

  7. Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW (1995) Science 268:880–884

    Article  CAS  Google Scholar 

  8. Chirico WJ, Markey ML, Fink AL (1998) Biochemistry 39:13862–13870

    Article  Google Scholar 

  9. Fan H, Kashi RS, Middaugh CR (2006) Arch Biochem Biophys 447:34–45

    Article  CAS  Google Scholar 

  10. Glover JR, Lindquist S (1998) Cell 94:73–82

    Article  CAS  Google Scholar 

  11. Glover JR, Lum R (2009) Protein Pept Lett 16:587–597

    Article  CAS  Google Scholar 

  12. Heyduk T, Lee JC (1989) Biochemistry 28:6914–6924

    Article  CAS  Google Scholar 

  13. Horowitz PM, Criscimagna NL (1985) Biochemistry 24:2587–2593

    Article  CAS  Google Scholar 

  14. Jones GW, Masison DC (2003) Genetics 163:495–506

    CAS  Google Scholar 

  15. Kabani M, Beckerich JM, Brodsky JL (2002) Mol Cell Biol 22:4677–4689

    Article  CAS  Google Scholar 

  16. King C, Eisenberg E, Greene LE (1995) J Biol Chem 270:22535–22540

    Article  CAS  Google Scholar 

  17. King C, Eisenberg E, Greene LE (1999) Biochemistry 38:12452–12459

    Article  CAS  Google Scholar 

  18. Lakowicz JR (2006) Principles of fluorescence. Springer, Baltimore, pp 278–327

    Book  Google Scholar 

  19. Lehrer SS (1971) Biochemistry 10:3254–3263

    Article  CAS  Google Scholar 

  20. Liberek K, Lewandowska A, Zietkiewics S (2008) EMBO J 27:328–335

    Article  CAS  Google Scholar 

  21. Masison DC, Kirkland PA, Sharma D (2009) Prion 3:65–73

    Article  CAS  Google Scholar 

  22. Mayer MP, Bukau B (2005) Cell Mol Life Sci 62:670–676

    Article  CAS  Google Scholar 

  23. Moro F, Fernández-Sáiz V, Slutsky O, Azem A, Muga A (2005) FEBS J 272:3184–3196

    Article  CAS  Google Scholar 

  24. Moro F, Fernández-Sáiz V, Muga A (2006) Protein Sci 15:223–233

    Article  CAS  Google Scholar 

  25. Needham PG, Masison DC (2008) Arch Biochem Biophys 478:167–174

    Article  CAS  Google Scholar 

  26. Revington M, Zhang Y, Yip GN, Kurochkin AV, Zuiderweg ER (2005) J Mol Biol 349:163–183

    Article  CAS  Google Scholar 

  27. Romanova NV, Chernoff YO (2009) Protein Pept Lett 16:598–605

    Article  CAS  Google Scholar 

  28. Sharma D, Masison DC (2009) Protein Pept Lett 16:571–581

    Article  CAS  Google Scholar 

  29. Shorter J, Lindquist S (2008) EMBO J 27:2712–2724

    Article  CAS  Google Scholar 

  30. Slater MR, Craig EA (1989) Nucleic Acids Res 17:805–806

    Article  CAS  Google Scholar 

  31. Tutar Y (2003) Structure-function studies with the cAMP receptor protein of E. coli. PhD. Thesis, Texas Tech University, Lubbock, Texas

  32. Tutar Y (2006) Protein Pept Lett 13:301–306

    Article  CAS  Google Scholar 

  33. Tutar Y (2006) Protein Pept Lett 13:307–311

    Article  CAS  Google Scholar 

  34. Tutar Y (2006) Protein Pept Lett 13:699–705

    Article  CAS  Google Scholar 

  35. Tutar Y (2007) Recent Pat DNA Gene Seq 1:125–127

    Article  CAS  Google Scholar 

  36. Tutar L, Tutar Y (2010) Curr Pharm Biotechnol 11:216–222

    Article  CAS  Google Scholar 

  37. Tutar Y, Song Y, Masison DC (2006) Genetics 172:851–861

    Article  CAS  Google Scholar 

  38. Vogel M, Mayer MP, Bukau B (2006) J Biol Chem 281:38705–38711

    Article  CAS  Google Scholar 

  39. Weibezahn J, Schlieker C, Tessarz P, Mogk A, Bukau B (2005) Biol Chem 386:739–744

    Article  CAS  Google Scholar 

  40. Witt SN (2010) Biopolymers 93:218–228

    Article  CAS  Google Scholar 

  41. Woo HJ, Jiang J, Lafer EM, Sousa R (2009) Biochemistry 48:11470–11477

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded partly by the Turkish Planning Organization (Grant DPT-K.120220-2006) and through seed grants from the Turkish National Academy of Sciences (TUBA-GEBIP) and from Cumhuriyet University Graduate School for Derya Arslan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Tutar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tutar, Y., Arslan, D. & Tutar, L. Heat, pH Induced Aggregation and Surface Hydrophobicity of S. cerevesiae Ssa1 Protein. Protein J 29, 501–508 (2010). https://doi.org/10.1007/s10930-010-9280-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-010-9280-2

Keywords

Navigation