Skip to main content

Advertisement

Log in

Improving categorical endpoint longitudinal exposure–response modeling through the joint modeling with a related endpoint

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Exposure–response modeling is important to optimize dose and dosing regimens in clinical drug development. While primary clinical trial endpoints often have few categories and thus provide only limited information, sometimes there may be additional, more informative endpoints. Benefits of fully incorporating relevant information in longitudinal exposure–response modeling through joint modeling have recently been shown. This manuscript aims to further investigate the benefit of joint modeling of an ordered categorical primary endpoint with a related near-continuous endpoint, through the sharing of model parameters in the latent variable indirect response (IDR) modeling framework. This is illustrated by analyzing the data collected through up to 116 weeks from a phase 3b response-adaptive trial of ustekinumab in patients with psoriasis. The primary endpoint was based on the 6-point physician’s global assessment (PGA) score. The Psoriasis area and severity Index (PASI) data, ranging from 0 to 72 with 0.1 increments, were also available. Separate and joint latent variable Type I IDR models of PGA and PASI scores were developed and compared. The results showed that the separate PGA model had a substantial structural bias, which was corrected by the joint modeling of PGA and PASI scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Overgaard RV, Ingwersen SH, Tornoe CW (2015) Establishing good practices for exposure-response analysis of clinical endpoints in drug development. CPT 4(10):565–575. https://doi.org/10.1002/psp4.12015

    Article  CAS  Google Scholar 

  2. Hu C, Zhou H, Sharma A (2017) Landmark and longitudinal exposure-response analyses in drug development. J Pharmacokinet Pharmacodyn 44(5):503–507. https://doi.org/10.1007/s10928-017-9534-0

    Article  CAS  PubMed  Google Scholar 

  3. Sharma A, Jusko WJ (1996) Characterization of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 24(6):611–635

    Article  CAS  Google Scholar 

  4. Blauvelt A, Ferris LK, Yamauchi PS, Qureshi A, Leonardi CL, Farahi K, Fakharzadeh S, Hsu MC, Li S, Chevrier M, Smith K, Goyal K, Chen Y, Munoz-Elias EJ, Callis Duffin K (2017) Extension of ustekinumab maintenance dosing interval in moderate-to-severe psoriasis: results of a phase IIIb, randomized, double-blinded, active-controlled, multicentre study (PSTELLAR). Br J Dermatol 177(6):1552–1561. https://doi.org/10.1111/bjd.15722

    Article  CAS  PubMed  Google Scholar 

  5. Hutmacher MM, Krishnaswami S, Kowalski KG (2008) Exposure-response modeling using latent variables for the efficacy of a JAK3 inhibitor administered to rheumatoid arthritis patients. J Pharmacokinet Pharmacodyn 35:139–157

    Article  CAS  Google Scholar 

  6. Hu C, Xu Z, Rahman MU, Davis HM, Zhou H (2010) A latent variable approach for modeling categorical endpoints among patients with rheumatoid arthritis treated with golimumab plus methotrexate. J Pharmacokinet Pharmacodyn 37(4):309–321

    Article  CAS  Google Scholar 

  7. Hu C, Xu Z, Mendelsohn A, Zhou H (2013) Latent variable indirect response modeling of categorical endpoints representing change from baseline. J Pharmacokinet Pharmacodyn 40(1):81–91

    Article  Google Scholar 

  8. Hu C (2014) Exposure-response modeling of clinical end points using latent variable indirect response models. CPT 3:e117. https://doi.org/10.1038/psp.2014.15

    Article  CAS  Google Scholar 

  9. Laffont CM, Vandemeulebroecke M, Concordet D (2014) Multivariate analysis of longitudinal ordinal data with mixed effects models, with application to clinical outcomes in osteoarthritis. J Am Stat Assoc 109(507):955–966

    Article  CAS  Google Scholar 

  10. Hu C, Randazzo B, Sharma A, Zhou H (2017) Improvement in latent variable indirect response modeling of multiple categorical clinical endpoints: application to modeling of guselkumab treatment effects in psoriatic patients. J Pharmacokinet Pharmacodyn 44(5):437–448. https://doi.org/10.1007/s10928-017-9531-3

    Article  CAS  PubMed  Google Scholar 

  11. Hu C, Yao Z, Chen Y, Randazzo B, Zhang L, Xu Z, Sharma A, Zhou H (2018) A comprehensive evaluation of exposure-response relationships in clinical trials: application to support guselkumab dose selection for patients with psoriasis. J Pharmacokinet Pharmacodyn 45(4):523–535. https://doi.org/10.1007/s10928-018-9581-1

    Article  CAS  PubMed  Google Scholar 

  12. Hu C, Szapary PO, Mendelsohn AM, Zhou H (2014) Latent variable indirect response joint modeling of a continuous and a categorical clinical endpoint. J Pharmacokinet Pharmacodyn 41(4):335–349. https://doi.org/10.1007/s10928-014-9366-0

    Article  PubMed  Google Scholar 

  13. Hu C, Zhou H (2016) Improvement in latent variable indirect response joint modeling of a continuous and a categorical clinical endpoint in rheumatoid arthritis. J Pharmacokinet Pharmacodyn 43(1):45–54

    Article  Google Scholar 

  14. Hu C, Xu Y, Zhuang Y, Hsu B, Sharma A, Xu Z, Zhang L, Zhou H (2018) Joint longitudinal model development: application to exposure-response modeling of ACR and DAS scores in rheumatoid arthritis patients treated with sirukumab. J Pharmacokinet Pharmacodyn 45(5):679–691. https://doi.org/10.1007/s10928-018-9598-5

    Article  CAS  PubMed  Google Scholar 

  15. Hu C, Zhou H, Sharma A (2020) Facilitating longitudinal exposure-response modeling of a composite endpoint using the joint modeling of sparsely and frequently collected subcomponents. AAPS J. https://doi.org/10.1208/s12248-020-00441-4

    Article  PubMed  Google Scholar 

  16. Hu C, Szapary PO, Yeilding N, Zhou H (2011) Informative dropout modeling of longitudinal ordered categorical data and model validation: application to exposure-response modeling of physician’s global assessment score for ustekinumab in patients with psoriasis. J Pharmacokinet Pharmacodyn 38(2):237–260

    Article  Google Scholar 

  17. Feagan BG, Sandborn WJ, Gasink C, Jacobstein D, Lang Y, Friedman JR, Blank MA, Johanns J, Gao LL, Miao Y, Adedokun OJ, Sands BE, Hanauer SB, Vermeire S, Targan S, Ghosh S, de Villiers WJ, Colombel JF, Tulassay Z, Seidler U, Salzberg BA, Desreumaux P, Lee SD, Loftus EV Jr, Dieleman LA, Katz S, Rutgeerts P, Group U-I-US (2016) Ustekinumab as induction and maintenance therapy for Crohn’s disease. The N Engl J Med 375(20):1946–1960. https://doi.org/10.1056/NEJMoa1602773

    Article  CAS  PubMed  Google Scholar 

  18. Sandborn WJ, Gasink C, Gao LL, Blank MA, Johanns J, Guzzo C, Sands BE, Hanauer SB, Targan S, Rutgeerts P, Ghosh S, de Villiers WJ, Panaccione R, Greenberg G, Schreiber S, Lichtiger S, Feagan BG, Group CS (2012) Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N Engl J Med 367(16):1519–1528. https://doi.org/10.1056/NEJMoa1203572

    Article  CAS  PubMed  Google Scholar 

  19. Zhou H, Hu C, Zhu Y, Lu M, Liao S, Yeilding N, Davis HM (2010) Population-based exposure-efficacy modeling of ustekinumab in patients with moderate to severe plaque psoriasis. J Clin Pharmacol 50(3):257–267. https://doi.org/10.1177/0091270009343695

    Article  CAS  PubMed  Google Scholar 

  20. Hu C, Zhou H, Sharma A (2020) Application of beta-distribution and combined uniform and binomial methods in longitudinal modeling of bounded outcome score data. AAPS J 22(5):95. https://doi.org/10.1208/s12248-020-00478-5

    Article  PubMed  Google Scholar 

  21. Hu C, Zhou H (2008) An improved approach for confirmatory phase III population pharmacokinetic analysis. J Clin Pharmacol 48(7):812–822. https://doi.org/10.1177/0091270008318670

    Article  PubMed  Google Scholar 

  22. Hu C, Zhang J, Zhou H (2011) Confirmatory analysis for phase III population pharmacokinetics. Pharm Stat 10(1):14–26. https://doi.org/10.1002/pst.403

    Article  PubMed  Google Scholar 

  23. Zhu Y, Hu C, Lu M, Liao S, Marini JC, Yohrling J, Yeilding N, Davis HM, Zhou H (2009) Population pharmacokinetic modeling of ustekinumab, a human monoclonal antibody targeting IL-12/23p40, in patients with moderate to severe plaque psoriasis. J Clin Pharmacol 49(2):162–175

    Article  CAS  Google Scholar 

  24. Xu Y, Hu C, Chen Y, Miao X, Adedokun OJ, Xu Z, Sharma A, Zhou H (2020) Population pharmacokinetics and exposure-response modeling analyses of ustekinumab in adults with moderately to severely active ulcerative colitis. J Clin Pharmacol. https://doi.org/10.1002/jcph.1582

    Article  PubMed  PubMed Central  Google Scholar 

  25. Beal SL (2001) Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn 28(5):481–504

    Article  CAS  Google Scholar 

  26. Holford N (2015) Clinical pharmacology = disease progression + drug action. Br J Clin Pharmacol 79(1):18–27. https://doi.org/10.1111/bcp.12170

    Article  PubMed  Google Scholar 

  27. Ursino M, Gasparini M (2018) A new parsimonious model for ordinal longitudinal data with application to subjective evaluations of a gastrointestinal disease. Stat Methods Med Res 27(5):1376–1393. https://doi.org/10.1177/0962280216661370

    Article  PubMed  Google Scholar 

  28. Hu C, Zhou H, Sharma A (2020) Applying beta distribution in analyzing bounded outcome score data. AAPS J 22(3):61. https://doi.org/10.1208/s12248-020-00441-4

    Article  PubMed  Google Scholar 

  29. Zhang L, Beal SL, Sheiner LB (2003) Simultaneous vs sequential analysis for population PK/PD data I: best-case performance. J Pharmacokinet Pharmacodyn 30(6):387–404

    Article  Google Scholar 

  30. Beal SL, Sheiner LB, Boeckmann A, Bauer RJ (2009) NONMEM user’s guides (1989–2009). Icon Development Solutions, Ellicott

    Google Scholar 

  31. Bauer RJ (2019) NONMEM tutorial part II: estimation methods and advanced examples. CPT. https://doi.org/10.1002/psp4.12422

    Article  Google Scholar 

  32. Karlsson MO, Holford NHG (2008) A tutorial on visual predictive checks. www.page-meeting.org/?abstract=1434

Download references

Funding

This research was funded by Janssen Research and Development, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanpu Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 274 kb)

Supplementary file2 (TXT 3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Zhou, H. Improving categorical endpoint longitudinal exposure–response modeling through the joint modeling with a related endpoint. J Pharmacokinet Pharmacodyn 49, 283–291 (2022). https://doi.org/10.1007/s10928-021-09796-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-021-09796-3

Keywords

Navigation