Skip to main content

Advertisement

Log in

Bolus pharmacokinetics: moving beyond mass-based dosing to guide drug administration

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Despite the common approach of bolus drug dosing using a patient’s mass, a more tailored approach would be to use empirically derived pharmacokinetic models. Previously, this could only be possible though the use of computer simulation using programs which are rarely available in clinical practice. Through mathematical manipulations and approximations, a simplified set of equations is demonstrated that can identify a bolus dose required to achieve a specified target effect site concentration. The proposed solution is compared against simulations of a wide variety of pharmacokinetic models. This set of equations provides a near-identical solution to the simulation approach. A boundary condition is established to ensure the derived equations have an acceptable error. This approach may allow for more precise administration of medications with the use of point of care technology and potentially allows for pharmacokinetic dosing in artificial intelligence problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. At the author’s institution there are over 50 different possible anesthetizing locations.

References

  1. Kim TK, Obara S, Johnson KB (2019) Basic principles of pharmacology. In: Gropper MA, et al. (eds) Miller’s anesthesia, 9th edn. Elsevier, Philadelphia, pp 462–486

    Google Scholar 

  2. Malholtra G, Eckmann DM (2019) Anesthesia for bariatric surgery. In: Gropper MA, et al. (eds) Miller’s anesthesia, 9th edn. Elsevier, Philadelphia, p 1924

    Google Scholar 

  3. Diprivan (Propofol) (2001) Injectable emulsion [package insert], Wilmington, DE: AstraZeneca LP

  4. Ingrande J, Lemmens HJM (2010) Dose adjustment of anaesthetics in the morbidly obese. Br J Anaesth 105(Suppl 1):i16–23

    Article  CAS  PubMed  Google Scholar 

  5. Subramani Y, Riad W, Chung F, Wong J (2017) Optimal propofol induction dose in morbidly obese patients: a randomized controlled trial comparing the bispectral index and lean body weight scalar. Can J Anaesth 64(5):471–479

    Article  PubMed  Google Scholar 

  6. Coetzee JF (2012) Allometric or lean body mass scaling of propofol pharmacokinetics: towards simplifying parameter sets for target-controlled infusions. Clin Pharmacokinet 51(3):137–145

    Article  CAS  PubMed  Google Scholar 

  7. Eleveld DJ, Colin P, Absalom AR, Struys MMRF (2018) Pharmacokinetic-pharmacodynamic model for propofol for broad application in anaesthesia and sedation. Br J Anaesth 120(5):942–959

    Article  CAS  PubMed  Google Scholar 

  8. Lee B, Lee JR, Na S (2009) Targeting smooth emergence: the effect site concentration of remifentanil for preventing cough during emergence during propofol-remifentanil anaesthesia for thyroid surgery. Br J Anaesth 102(6):775–778

    Article  CAS  PubMed  Google Scholar 

  9. Nho JS, Lee SY, Kang JM et al (2009) Effects of maintaining a remifentanil infusion on the recovery profiles during emergence from anaesthesia and tracheal extubation. Br J Anaesth 103(6):817–821

    Article  CAS  PubMed  Google Scholar 

  10. Shafer SL, Egan T (2016) Target-controlled infusions: surfing USA Redux. Anesth Analg 122(1):1–3

    Article  PubMed  Google Scholar 

  11. Sarraf E, Mathews DM (2017) Building a Simplified Remifentanil Target Controlled Infusion System. Oral session presented at ANESTHESIOLOGY, Boston, MA

  12. Sarraf E, Mathews DM (2017) Simplified estimation of the volume of distribution at peak effect for remifentanil. Poster session presented at ANESTHESIOLOGY, Boston, MA

  13. Shafer SL, Gregg KM (1992) Algorithms to rapidly achieve and maintain stable drug concentrations at the site of drug effect with a computer-controlled infusion pump. J Pharmacokinet Biopharm 20(2):147–169

    Article  CAS  PubMed  Google Scholar 

  14. Henthorn TK, Krejcie TC, Shanks CA, Avram MJ (1992) Time-dependent distribution volume and kinetics of the pharmacodynamic effector site. J Pharm Sci 81(11):1136–1138

    Article  CAS  PubMed  Google Scholar 

  15. Niazi S (1976) Volume of distribution as a function of time. J Pharm Sci 65(3):452–454

    Article  CAS  PubMed  Google Scholar 

  16. Levitt DG, Schnider TW (2005) Human physiologically based pharmacokinetic model for propofol. BMC Anesthesiol 5(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cortínez LI (2014) What is the ke0 and what does it tell me about propofol? Anaesthesia 69(5):399–402

    Article  PubMed  Google Scholar 

  18. Minto CF, Schnider TW, Gregg KM, Henthorn TK, Shafer SL (2003) Using the time of maximum effect site concentration to combine pharmacokinetics and pharmacodynamics. Anesthesiology 99(2):324–333

    Article  PubMed  Google Scholar 

  19. Wada DR, Drover DR, Lemmens HJ (1998) Determination of the distribution volume that can be used to calculate the intravenous loading dose. Clin Pharmacokinet 35(1):1–7

    Article  CAS  PubMed  Google Scholar 

  20. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder-mead simplex method in low dimensions. SIAM J Optim 9(1):112–147

    Article  Google Scholar 

  21. Barr J, Zomorodi K, Bertaccini EJ, Shafer SL, Geller E (2001) A double-blind, randomized comparison of i.v. lorazepam versus midazolam for sedation of ICU patients via a pharmacologic model. Anesthesiology 95(2):286–298

    Article  CAS  PubMed  Google Scholar 

  22. Shafer SL. STANPUMP. Open TCI. https://opentci.org/code/stanpump. Accessed 12 July 2018

  23. Minto CF, Schnider TW, Shafer SL (1997) Pharmacokinetics and pharmacodynamics of remifentanil II. Model application. Anesthesiology 86(1):24–33

    Article  CAS  PubMed  Google Scholar 

  24. Schnider TW, Minto CF, Gambus PL et al (1998) The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology 88(5):1170–1182

    Article  CAS  PubMed  Google Scholar 

  25. Schnider TW, Minto CF, Shafer SL et al (1999) The influence of age on propofol pharmacodynamics. Anesthesiology 90(6):1502–1516

    Article  CAS  PubMed  Google Scholar 

  26. Mandel JE. MATLAB. Open TCI. https://opentci.org/code/matlab. Accessed 12 July 2018

  27. Aranake A, Mashour GA, Avidan MS (2013) Minimum alveolar concentration: ongoing relevance and clinical utility. Anaesthesia 68(5):512–522

    Article  CAS  PubMed  Google Scholar 

  28. Kendale S, Kulkarni P, Rosenberg AD, Wang J (2018) Supervised machine-learning predictive analytics for prediction of postinduction hypotension. Anesthesiology 129(4):675–688

    Article  PubMed  Google Scholar 

  29. Epstein RH, Dexter F, Schwenk ES (2017) Hypotension during induction of anaesthesia is neither a reliable nor a useful quality measure for comparison of anaesthetists' performance. Br J Anaesth 119(1):106–114

    Article  CAS  PubMed  Google Scholar 

  30. Cheung CC, Martyn A, Campbell N et al (2015) Predictors of intraoperative hypotension and bradycardia. Am J Med 128(5):532–538. https://doi.org/10.1016/j.amjmed.2014.11.030

    Article  PubMed  Google Scholar 

  31. Berezhkovskiy LM (2016) Exploration of PBPK model-calculation of drug time course in tissue using IV bolus drug plasma concentration-time profile and the physiological parameters of the organ. J Pharm Sci 105(8):2453–2458

    Article  CAS  PubMed  Google Scholar 

  32. Krejcie TC, Avram MJ (2012) Recirculatory pharmacokinetic modeling: what goes around, comes around. Anesth Analg 115(2):223–226

    Article  CAS  PubMed  Google Scholar 

  33. Kazama T, Ikeda K, Morita K, Ikeda T, Kikura M, Sato S (2001) Relation between initial blood distribution volume and propofol induction dose requirement. Anesthesiology 94(2):205–210

    Article  CAS  PubMed  Google Scholar 

  34. Krejcie TC, Avram MJ (1999) What determines anesthetic induction dose? It's the front-end kinetics, doctor! Anesth Analg 89(3):541–544

    Article  CAS  PubMed  Google Scholar 

In the Supplemental Digital Content:

  1. Cortínez LI, Anderson BJ, Penna A et al (2010) Influence of obesity on propofol pharmacokinetics: derivation of a pharmacokinetic model. Br J Anaesth 105(4):448–456

    Article  PubMed  Google Scholar 

  2. Cortínez LI, De la Fuente N, Eleveld DJ et al (2014) Performance of propofol target-controlled infusion models in the obese: pharmacokinetic and pharmacodynamic analysis. Anesth Analg 119(2):302–310

    Article  PubMed  Google Scholar 

  3. Flood P, Shafer S (2015) Basic principles of pharmacology. In: Flood P, Rathmell JP, Shafer S (eds) Stoelting’s pharmacology & physiology in anesthetic practice, 5th edn. Wolters Kluwer Health, Philadelphia, PA, pp 11–43

    Google Scholar 

  4. Oppenheim AV. Linear time-invariant systems. In: Oppenheim AV, Willsky AS, Hamid S. Signals and systems (2nd ed). Pearson University Press, Pearson, 1997, pp 75–178

  5. Shafer SL, Siegel LC, Cooke JE, Scott JC (1988) Testing computer-controlled infusion pumps by simulation. Anesthesiology 68(2):261–266

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Donald M Mathews, M.D. for his guidance during the writing of the manuscript and William G Tharp, M.D., Ph.D., and Alexander F. Friend, M.S., for their constructive criticism of the manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

ES: this author designed the study, analyzed the data, and prepared the manuscript.

Corresponding author

Correspondence to Elie Sarraf.

Ethics declarations

Conflict of interest

The author declare that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10928_2020_9709_MOESM1_ESM.docx

Supplementary file1 (DOCX 2253 kb). Appendix A—Does bolus dosing by mass alone make sense?: This Appendix demonstrates why a patient’s mass is insufficient to calculate a bolus dose of a medication

10928_2020_9709_MOESM2_ESM.docx

Supplementary file2 (DOCX 32 kb). Appendix B—Deriving the critical equations: This Appendix solves the differential equations governing a compartment model following a bolus dose of a medication. It allows the calculation of the volume of distribution at peak effect, and it demonstrates the relationship between the time to peak effect and ke0

10928_2020_9709_MOESM3_ESM.xlsx

Supplementary file3 (XLSX 20 kb). Appendix C—Schnider bolus worksheet: This is an Excel worksheet to calculate the bolus dose of propofol required to achieve a specified Effect Site concentration goal using the Schnider model

10928_2020_9709_MOESM4_ESM.docx

Supplementary file4 (DOCX 231 kb). Appendix D—TCI solution. This Appendix describes how to construct a “human controlled” TCI algorithm using the equations derived in the manuscript and a standard infusion pump. A sample MATLAB code is also attached

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarraf, E. Bolus pharmacokinetics: moving beyond mass-based dosing to guide drug administration. J Pharmacokinet Pharmacodyn 47, 573–581 (2020). https://doi.org/10.1007/s10928-020-09709-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-020-09709-w

Keywords

Navigation