Skip to main content

Advertisement

Log in

PBPK modeling of CYP3A and P-gp substrates to predict drug–drug interactions in patients undergoing Roux-en-Y gastric bypass surgery

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Roux-en-Y gastric bypass surgery (RYGBS) is an effective surgical intervention to reduce mortality in morbidly obese patients. Following RYGBS, the disposition of drugs may be affected by anatomical alterations and changes in intestinal and hepatic drug metabolizing enzyme activity. The aim of this study was to better understand the drug–drug interaction (DDI) potential of CYP3A and P-gp inhibitors. The impacts of RYGBS on the absorption and metabolism of midazolam, acetaminophen, digoxin, and their major metabolites were simulated using physiologically-based pharmacokinetic (PBPK) modeling. PBPK models for verapamil and posaconazole were built to evaluate CYP3A- and P-gp-mediated DDIs pre- and post-RYGBS. The simulations suggest that for highly soluble drugs, such as verapamil, the predicted bioavailability was comparable pre- and post-RYGBS. For verapamil inhibition, RYGBS did not affect the fold-change of the predicted inhibited-to-control plasma AUC ratio or predicted inhibited-to-control peak plasma concentration ratio for either midazolam or digoxin. In contrast, the predicted bioavailability of posaconazole, a poorly soluble drug, decreased from 12% pre-RYGBS to 5% post-RYGBS. Compared to control, the predicted posaconazole-inhibited midazolam plasma AUC increased by 2.0-fold pre-RYGBS, but only increased by 1.6-fold post-RYGBS. A similar trend was predicted for pre- and post-RYGBS inhibited-to-control midazolam peak plasma concentration ratios (2.0- and 1.6-fold, respectively) following posaconazole inhibition. Absorption of highly soluble drugs was more rapid post-RYGBS, resulting in higher predicted midazolam peak plasma concentrations, which was further increased following inhibition by verapamil or posaconazole. To reduce the risk of a drug–drug interaction in patients post-RYGBS, the dose or frequency of object drugs may need to be decreased when administered with highly soluble inhibitor drugs, especially if toxicities are associated with plasma peak concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kelly T, Yang W, Chen CS, Reynolds K, He J (2008) Global burden of obesity in 2005 and projections to 2030. Int J Obesity 32(9):1431–1437. https://doi.org/10.1038/ijo.2008.102

    Article  CAS  Google Scholar 

  2. Mokdad AH, Marks JS, Stroup DF, Gerberding JL (2004) Actual causes of death in the United States, 2000. JAMA 291(10):1238–1245. https://doi.org/10.1001/jama.291.10.1238

    Article  PubMed  Google Scholar 

  3. Miras AD, le Roux CW (2018) Surgery: the new gold-standard—medical gastric bypass. Nat Rev Endocrinol 14(5):257–258. https://doi.org/10.1038/nrendo.2018.28

    Article  PubMed  Google Scholar 

  4. Arterburn DE, Courcoulas AP (2014) Bariatric surgery for obesity and metabolic conditions in adults. BMJ (Clin Res Ed) 349:g3961. https://doi.org/10.1136/bmj.g3961

    Article  CAS  Google Scholar 

  5. Albaugh VL, Banan B, Ajouz H, Abumrad NN, Flynn CR (2017) Bile acids and bariatric surgery. Mol Aspects Med 56:75–89. https://doi.org/10.1016/j.mam.2017.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Risstad H, Kristinsson JA, Fagerland MW, le Roux CW, Birkeland KI, Gulseth HL, Thorsby PM, Vincent RP, Engstrom M, Olbers T, Mala T (2017) Bile acid profiles over 5 years after gastric bypass and duodenal switch: results from a randomized clinical trial. Surg Obesity Relat Dis 13(9):1544–1553. https://doi.org/10.1016/j.soard.2017.05.024

    Article  Google Scholar 

  7. Duboc H, Nguyen CC, Cavin JB, Ribeiro-Parenti L, Jarry AC, Rainteau D, Humbert L, Coffin B, Le Gall M, Bado A, Sokol H (2019) Roux-en-Y gastric-bypass and sleeve gastrectomy induces specific shifts of the gut microbiota without altering the metabolism of bile acids in the intestinal lumen. Int J Obesity 43(2):428–431. https://doi.org/10.1038/s41366-018-0015-3

    Article  CAS  Google Scholar 

  8. Liou AP, Paziuk M, Luevano JM Jr, Machineni S, Turnbaugh PJ, Kaplan LM (2013) Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med 5(178):178ra141. https://doi.org/10.1126/scitranslmed.3005687

    Article  CAS  Google Scholar 

  9. Karimi M, Kabir A, Nejatifar M, Pazouki A (2018) Trend of changes in serum albumin and its relation with sex, age, and BMI following laparoscopic mini-gastric bypass surgery in morbid obese cases. Obes Surg 28(3):671–680. https://doi.org/10.1007/s11695-017-2912-2

    Article  PubMed  Google Scholar 

  10. Savassi-Rocha AL, Diniz MT, Vilela EG, Diniz Mde F, Sanches SR, da Cunha AS, Ferrari Mde L, Torres HO, Maciente BA, Ataliba GS, Araujo PM, Guerra TB, Balbino IK (2014) Changes in intestinal permeability after Roux-en-Y gastric bypass. Obes Surg 24(2):184–190. https://doi.org/10.1007/s11695-013-1084-y

    Article  PubMed  Google Scholar 

  11. Vaessen SF, van Lipzig MM, Pieters RH, Krul CA, Wortelboer HM, van de Steeg E (2017) Regional expression levels of drug transporters and metabolizing enzymes along the pig and human intestinal tract and comparison with Caco-2 cells. Drug Metab Dispos 45(4):353–360. https://doi.org/10.1124/dmd.116.072231

    Article  CAS  PubMed  Google Scholar 

  12. Hachon L, Decleves X, Faucher P, Carette C, Lloret-Linares C (2017) RYGB and drug disposition: how to do better? Analysis of pharmacokinetic studies and recommendations for clinical practice. Obes Surg 27(4):1076–1090. https://doi.org/10.1007/s11695-016-2535-z

    Article  PubMed  Google Scholar 

  13. Jamei M, Yang J, Turner D, Yeo KR, Tucker GT, Rostami-Hodjegan A (2007) A novel physiologically-based mechanistic model for predicting oral drug absorption: the Advanced Dissolution, Absorption, and Metabolism (ADAM) Model. Simcyp. https://www.certara.com/posters/a-novel-physiologically-based-mechanistic-model-for-predicting-oral-drug-absorption-the-advanced-dissolution-absorption-and-metabolism-adam-model-2/?ap=PBPK.

  14. Darwich AS, Pade D, Rowland-Yeo K, Jamei M, Asberg A, Christensen H, Ashcroft DM, Rostami-Hodjegan A (2013) Evaluation of an in silico PBPK post-bariatric surgery model through simulating oral drug bioavailability of atorvastatin and cyclosporine. CPT Pharmacometrics Syst Pharmacol 2:e47. https://doi.org/10.1038/psp.2013.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chan LN, Lin YS, Tay-Sontheimer JC, Trawick D, Oelschlager BK, Flum DR, Patton KK, Shen DD, Horn JR (2015) Proximal Roux-en-Y gastric bypass alters drug absorption pattern but not systemic exposure of CYP3A4 and P-glycoprotein substrates. Pharmacotherapy 35(4):361–369. https://doi.org/10.1002/phar.1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen K-F, Chan L-N, Senn T, Oelschlager BK, Flum DR, Shen DD, Horn JR, Lin YS (2020) The impact of proximal Roux-en-Y gastric bypass surgery on acetaminophen absorption and metabolism. Pharmacotherapy 40(3):191–203

    Article  CAS  PubMed  Google Scholar 

  17. Jiang SZ, Lu W, Zong XF, Ruan HY, Liu Y (2016) Obesity and hypertension. Exp Ther Med 12(4):2395–2399. https://doi.org/10.3892/etm.2016.3667

    Article  PubMed  PubMed Central  Google Scholar 

  18. Scheinfeld NS (2004) Obesity and dermatology. Clin Dermatol 22(4):303–309. https://doi.org/10.1016/j.clindermatol.2004.01.001

    Article  PubMed  Google Scholar 

  19. Benet LZ, Broccatelli F, Oprea TI (2011) BDDCS applied to over 900 drugs. AAPS J 13(4):519–547. https://doi.org/10.1208/s12248-011-9290-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Link B, Haschke M, Grignaschi N, Bodmer M, Aschmann YZ, Wenk M, Krahenbuhl S (2008) Pharmacokinetics of intravenous and oral midazolam in plasma and saliva in humans: usefulness of saliva as matrix for CYP3A phenotyping. Br J Clin Pharmacol 66(4):473–484. https://doi.org/10.1111/j.1365-2125.2008.03201.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Raffa RB, Pawasauskas J, Pergolizzi JV Jr, Lu L, Chen Y, Wu S, Jarrett B, Fain R, Hill L, Devarakonda K (2018) Pharmacokinetics of oral and intravenous paracetamol (acetaminophen) when co-administered with intravenous morphine in healthy adult subjects. Clin Drug Investig 38(3):259–268. https://doi.org/10.1007/s40261-017-0610-4

    Article  CAS  PubMed  Google Scholar 

  22. Santostasi G, Fantin M, Maragno I, Gaion RM, Basadonna O, Dalla-Volta S (1987) Effects of amiodarone on oral and intravenous digoxin kinetics in healthy subjects. J Cardiovasc Pharmacol 9(4):385–390. https://doi.org/10.1097/00005344-198704000-00001

    Article  CAS  PubMed  Google Scholar 

  23. Abernethy DR, Schwartz JB (1988) Verapamil pharmacodynamics and disposition in obese hypertensive patients. J Cardiovasc Pharmacol 11(2):209–215

    Article  CAS  PubMed  Google Scholar 

  24. Kersemaekers WM, van Iersel T, Nassander U, O'Mara E, Waskin H, Caceres M, van Iersel ML (2015) Pharmacokinetics and safety study of posaconazole intravenous solution administered peripherally to healthy subjects. Antimicrob Agents Chemother 59(2):1246–1251. https://doi.org/10.1128/aac.04223-14

    Article  PubMed  PubMed Central  Google Scholar 

  25. Backman JT, Olkkola KT, Aranko K, Himberg JJ, Neuvonen PJ (1994) Dose of midazolam should be reduced during diltiazem and verapamil treatments. Br J Clin Pharmacol 37(3):221–225. https://doi.org/10.1111/j.1365-2125.1994.tb04266.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chiew A, Day P, Salonikas C, Naidoo D, Graudins A, Thomas R (2010) The comparative pharmacokinetics of modified-release and immediate-release paracetamol in a simulated overdose model. Emerg Med Australas 22(6):548–555. https://doi.org/10.1111/j.1742-6723.2010.01354.x

    Article  PubMed  Google Scholar 

  27. Rodin SM, Johnson BF, Wilson J, Ritchie P, Johnson J (1988) Comparative effects of verapamil and isradipine on steady-state digoxin kinetics. Clin Pharmacol Ther 43(6):668–672. https://doi.org/10.1038/clpt.1988.93

    Article  CAS  PubMed  Google Scholar 

  28. Sawicki W (2002) Pharmacokinetics of verapamil and norverapamil from controlled release floating pellets in humans. Eur J Pharm Biopharm 53(1):29–35. https://doi.org/10.1016/s0939-6411(01)00189-8

    Article  CAS  PubMed  Google Scholar 

  29. Krishna G, Ma L, Martinho M, O'Mara E (2012) Single-dose phase I study to evaluate the pharmacokinetics of posaconazole in new tablet and capsule formulations relative to oral suspension. Antimicrob Agents Chemother 56(8):4196–4201. https://doi.org/10.1128/aac.00222-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gesquiere I, Hens B, Van der Schueren B, Mols R, de Hoon J, Lannoo M, Matthys C, Foulon V, Augustijns P (2016) Drug disposition before and after gastric bypass: fenofibrate and posaconazole. Br J Clin Pharmacol 82(5):1325–1332. https://doi.org/10.1111/bcp.13054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krishna G, Moton A, Ma L, Savant I, Martinho M, Seiberling M, McLeod J (2009) Effects of oral posaconazole on the pharmacokinetic properties of oral and intravenous midazolam: a phase I, randomized, open-label, crossover study in healthy volunteers. Clin Ther 31(2):286–298. https://doi.org/10.1016/j.clinthera.2009.02.022

    Article  CAS  PubMed  Google Scholar 

  32. Brill MJ, van Rongen A, van Dongen EP, van Ramshorst B, Hazebroek EJ, Darwich AS, Rostami-Hodjegan A, Knibbe CA (2015) The pharmacokinetics of the CYP3A substrate midazolam in morbidly obese patients before and one year after bariatric surgery. Pharm Res 32(12):3927–3936. https://doi.org/10.1007/s11095-015-1752-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vree TB, Shimoda M, Driessen JJ, Guelen PJ, Janssen TJ, Termond EF, van Dalen R, Hafkenscheid JC, Dirksen MS (1989) Decreased plasma albumin concentration results in increased volume of distribution and decreased elimination of midazolam in intensive care patients. Clin Pharmacol Ther 46(5):537–544. https://doi.org/10.1038/clpt.1989.182

    Article  CAS  PubMed  Google Scholar 

  34. Ohmori J, Maeda S, Higuchi H, Ishii M, Arai Y, Tomoyasu Y, Kohjitani A, Shimada M, Miyawaki T (2011) Propofol increases the rate of albumin-unbound free midazolam in serum albumin solution. J Anesth 25(4):618–620. https://doi.org/10.1007/s00540-011-1176-6

    Article  PubMed  Google Scholar 

  35. Iisalo E (1977) Clinical pharmacokinetics of digoxin. Clin Pharmacokinet 2(1):1–16. https://doi.org/10.2165/00003088-197702010-00001

    Article  CAS  PubMed  Google Scholar 

  36. Tillement JP, Zini R, Lecomte M, d'Athis P (1980) Binding of digitoxin, digoxin and gitoxin to human serum albumin. Eur J Drug Metab Pharmacokinet 5(3):129–134. https://doi.org/10.1007/BF03189456

    Article  CAS  PubMed  Google Scholar 

  37. Gazzard BG, Ford-Hutchinson AW, Smith MJ, Williams R (1973) The binding of paracetamol to plasma proteins of man and pig. J Pharm Pharmacol 25(12):964–967. https://doi.org/10.1111/j.2042-7158.1973.tb09987.x

    Article  CAS  PubMed  Google Scholar 

  38. Milligan TP, Morris HC, Hammond PM, Price CP (1994) Studies on paracetamol binding to serum proteins. Ann Clin Biochem 31(Pt 5):492–496. https://doi.org/10.1177/000456329403100512

    Article  CAS  PubMed  Google Scholar 

  39. Li Y, Theuretzbacher U, Clancy CJ, Nguyen MH, Derendorf H (2010) Pharmacokinetic/pharmacodynamic profile of posaconazole. Clin Pharmacokinet 49(6):379–396. https://doi.org/10.2165/11319340-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  40. Ritz P, Becouarn G, Douay O, Salle A, Topart P, Rohmer V (2009) Gastric bypass is not associated with protein malnutrition in morbidly obese patients. Obes Surg 19(7):840–844. https://doi.org/10.1007/s11695-008-9627-3

    Article  PubMed  Google Scholar 

  41. Antoniewicz A, Kalinowski P, Kotulecka KJ, Kocon P, Paluszkiewicz R, Remiszewski P, Zieniewicz K (2019) Nutritional deficiencies in patients after Roux-en-Y gastric bypass and sleeve gastrectomy during 12-month follow-up. Obes Surg 29(10):3277–3284. https://doi.org/10.1007/s11695-019-03985-3

    Article  PubMed  Google Scholar 

  42. Oliveira Cda S, Beserra BT, Cunha RS, Brito AG, de Miranda RC, Zeni LA, Nunes EA, Trindade EB (2015) Impact of Roux-en-Y gastric bypass on lipid and inflammatory profiles. Rev Col Bras Cir 42(5):305–310. https://doi.org/10.1590/0100-69912015005007

    Article  PubMed  Google Scholar 

  43. Cheymol G (1988) Drug pharmacokinetics in the obese. Fundam Clin Pharmacol 2(3):239–256. https://doi.org/10.1111/j.1472-8206.1988.tb00635.x

    Article  CAS  PubMed  Google Scholar 

  44. van Rongen A, Valitalo PAJ, Peeters MYM, Boerma D, Huisman FW, van Ramshorst B, van Dongen EPA, van den Anker JN, Knibbe CAJ (2016) Morbidly obese patients exhibit increased CYP2E1-mediated oxidation of acetaminophen. Clin Pharmacokinet 55(7):833–847. https://doi.org/10.1007/s40262-015-0357-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Izukawa T, Nakajima M, Fujiwara R, Yamanaka H, Fukami T, Takamiya M, Aoki Y, Ikushiro S, Sakaki T, Yokoi T (2009) Quantitative analysis of UDP-glucuronosyltransferase (UGT) 1A and UGT2B expression levels in human livers. Drug Metab Dispos 37(8):1759–1768. https://doi.org/10.1124/dmd.109.027227

    Article  CAS  PubMed  Google Scholar 

  46. Hardwick RN, Ferreira DW, More VR, Lake AD, Lu Z, Manautou JE, Slitt AL, Cherrington NJ (2013) Altered UDP-glucuronosyltransferase and sulfotransferase expression and function during progressive stages of human nonalcoholic fatty liver disease. Drug Metab Dispos 41(3):554–561. https://doi.org/10.1124/dmd.112.048439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jiang XL, Zhao P, Barrett JS, Lesko LJ, Schmidt S (2013) Application of physiologically based pharmacokinetic modeling to predict acetaminophen metabolism and pharmacokinetics in children. CPT Pharmacometrics Syst Pharmacol 2:e80. https://doi.org/10.1038/psp.2013.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Laine JE, Auriola S, Pasanen M, Juvonen RO (2009) Acetaminophen bioactivation by human cytochrome P450 enzymes and animal microsomes. Xenobiotica 39(1):11–21. https://doi.org/10.1080/00498250802512830

    Article  CAS  PubMed  Google Scholar 

  49. Mutlib AE, Goosen TC, Bauman JN, Williams JA, Kulkarni S, Kostrubsky S (2006) Kinetics of acetaminophen glucuronidation by UDP-glucuronosyltransferases 1A1, 1A6, 1A9 and 2B15. Potential implications in acetaminophen-induced hepatotoxicity. Chem Res Toxicol 19(5):701–709. https://doi.org/10.1021/tx050317i

    Article  CAS  PubMed  Google Scholar 

  50. Riches Z, Bloomer J, Patel A, Nolan A, Coughtrie M (2009) Assessment of cryopreserved human hepatocytes as a model system to investigate sulfation and glucuronidation and to evaluate inhibitors of drug conjugation. Xenobiotica 39(5):374–381. https://doi.org/10.1080/00498250902763440

    Article  CAS  PubMed  Google Scholar 

  51. Abernethy DR, Greenblatt DJ, Smith TW (1981) Digoxin disposition in obesity: clinical pharmacokinetic investigation. Am Heart J 102(4):740–744. https://doi.org/10.1016/0002-8703(81)90100-9

    Article  CAS  PubMed  Google Scholar 

  52. Levitt DG (2013) Quantitation of small intestinal permeability during normal human drug absorption. BMC Pharmacol Toxicol 14:34. https://doi.org/10.1186/2050-6511-14-34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hartman JH, Letzig LG, Roberts DW, James LP, Fifer EK, Miller GP (2015) Cooperativity in CYP2E1 metabolism of acetaminophen and styrene mixtures. Biochem Pharmacol 97(3):341–349. https://doi.org/10.1016/j.bcp.2015.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Loftsson T, Hreinsdottir D (2006) Determination of aqueous solubility by heating and equilibration: a technical note. AAPS PharmSciTech 7(1):E4. https://doi.org/10.1208/pt070104

    Article  PubMed  Google Scholar 

  55. Hens B, Pathak SM, Mitra A, Patel N, Liu B, Patel S, Jamei M, Brouwers J, Augustijns P, Turner DB (2017) In silico modeling approach for the evaluation of gastrointestinal dissolution, supersaturation, and precipitation of posaconazole. Mol Pharm 14(12):4321–4333. https://doi.org/10.1021/acs.molpharmaceut.7b00396

    Article  CAS  PubMed  Google Scholar 

  56. Zimmerman EI, Roberts JL, Li L, Finkelstein D, Gibson A, Chaudhry AS, Schuetz EG, Rubnitz JE, Inaba H, Baker SD (2012) Ontogeny and sorafenib metabolism. Clin Cancer Res 18(20):5788–5795. https://doi.org/10.1158/1078-0432.Ccr-12-1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lempers VJ, van den Heuvel JJ, Russel FG, Aarnoutse RE, Burger DM, Bruggemann RJ, Koenderink JB (2016) Inhibitory potential of antifungal drugs on ATP-binding cassette transporters P-glycoprotein, MRP1 to MRP5, BCRP, and BSEP. Antimicrob Agents Chemother 60(6):3372–3379. https://doi.org/10.1128/aac.02931-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ghosal A, Hapangama N, Yuan Y, Achanfuo-Yeboah J, Iannucci R, Chowdhury S, Alton K, Patrick JE, Zbaida S (2004) Identification of human UDP-glucuronosyltransferase enzyme(s) responsible for the glucuronidation of posaconazole (Noxafil). Drug Metab Dispos 32(2):267–271. https://doi.org/10.1124/dmd.32.2.267

    Article  CAS  PubMed  Google Scholar 

  59. Sugimoto H, Matsumoto S, Tachibana M, Niwa S, Hirabayashi H, Amano N, Moriwaki T (2011) Establishment of in vitro P-glycoprotein inhibition assay and its exclusion criteria to assess the risk of drug–drug interaction at the drug discovery stage. J Pharm Sci 100(9):4013–4023. https://doi.org/10.1002/jps.22652

    Article  CAS  PubMed  Google Scholar 

  60. Cristofoletti R, Patel N, Dressman JB (2016) Differences in food effects for 2 weak bases with similar BCS drug-related properties: what is happening in the intestinal lumen? J Pharm Sci 105(9):2712–2722. https://doi.org/10.1016/j.xphs.2015.11.033

    Article  CAS  PubMed  Google Scholar 

  61. Courtney R, Sansone A, Smith W, Marbury T, Statkevich P, Martinho M, Laughlin M, Swan S (2005) Posaconazole pharmacokinetics, safety, and tolerability in subjects with varying degrees of chronic renal disease. J Clin Pharmacol 45(2):185–192. https://doi.org/10.1177/0091270004271402

    Article  CAS  PubMed  Google Scholar 

  62. Ulldemolins M, Roberts JA, Rello J, Paterson DL, Lipman J (2011) The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin Pharmacokinet 50(2):99–110. https://doi.org/10.2165/11539220-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  63. Nguyen HQ, Kimoto E, Callegari E, Obach RS (2016) Mechanistic modeling to predict midazolam metabolite exposure from in vitro data. Drug Metab Dispos 44(5):781–791. https://doi.org/10.1124/dmd.115.068601

    Article  PubMed  Google Scholar 

  64. Seo KA, Bae SK, Choi YK, Choi CS, Liu KH, Shin JG (2010) Metabolism of 1′- and 4-hydroxymidazolam by glucuronide conjugation is largely mediated by UDP-glucuronosyltransferases 1A4, 2B4, and 2B7. Drug metabolism and disposition: the biological fate of chemicals 38(11):2007–2013. https://doi.org/10.1124/dmd.110.035295

    Article  CAS  Google Scholar 

  65. Abduljalil K, Cain T, Humphries H, Rostami-Hodjegan A (2014) Deciding on success criteria for predictability of pharmacokinetic parameters from in vitro studies: an analysis based on in vivo observations. Drug Metab Dispos 42(9):1478–1484. https://doi.org/10.1124/dmd.114.058099

    Article  CAS  PubMed  Google Scholar 

  66. Sager JE, Yu J, Ragueneau-Majlessi I, Isoherranen N (2015) Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification. Drug Metab Dispos 43(11):1823–1837. https://doi.org/10.1124/dmd.115.065920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Almukainzi MLV, Löbenberg R (2014) Modelling the absorption of metformin with patients post gastric bypass surgery. J Diabetes Metab 5(3):1000. https://doi.org/10.4172/2155-6156.1000353

    Article  CAS  Google Scholar 

  68. Darwich AS, Pade D, Ammori BJ, Jamei M, Ashcroft DM, Rostami-Hodjegan A (2012) A mechanistic pharmacokinetic model to assess modified oral drug bioavailability post bariatric surgery in morbidly obese patients: interplay between CYP3A gut wall metabolism, permeability and dissolution. J Pharm Pharmacol 64(7):1008–1024. https://doi.org/10.1111/j.2042-7158.2012.01538.x

    Article  CAS  PubMed  Google Scholar 

  69. Gesquiere I, Darwich AS, Van der Schueren B, de Hoon J, Lannoo M, Matthys C, Rostami A, Foulon V, Augustijns P (2015) Drug disposition and modelling before and after gastric bypass: immediate and controlled-release metoprolol formulations. Br J Clin Pharmacol 80(5):1021–1030. https://doi.org/10.1111/bcp.12666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Elbarbry F (2015) Oral bioavailability in special populations. MOJ Bioequiv Availab 1(3):49–52

    Google Scholar 

  71. Cavin JB, Couvelard A, Lebtahi R, Ducroc R, Arapis K, Voitellier E, Cluzeaud F, Gillard L, Hourseau M, Mikail N, Ribeiro-Parenti L, Kapel N, Marmuse JP, Bado A, Le Gall M (2016) Differences in alimentary glucose absorption and intestinal disposal of blood glucose after Roux-en-Y gastric bypass vs sleeve gastrectomy. Gastroenterology 150(2):454–464.e459. https://doi.org/10.1053/j.gastro.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  72. Chen Y, Lu Y, Chen J, Lai J, Sun J, Hu F, Wu W (2009) Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. Int J Pharm 376(1–2):153–160. https://doi.org/10.1016/j.ijpharm.2009.04.022

    Article  CAS  PubMed  Google Scholar 

  73. Yoon E, Babar A, Choudhary M, Kutner M, Pyrsopoulos N (2016) Acetaminophen-induced hepatotoxicity: a comprehensive update. J Clin Transl Hepatol 4(2):131–142. https://doi.org/10.14218/jcth.2015.00052

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gniado K, MacFhionnghaile P, McArdle P, Erxleben A (2018) The natural bile acid surfactant sodium taurocholate (NaTC) as a coformer in coamorphous systems: enhanced physical stability and dissolution behavior of coamorphous drug-NaTc systems. Int J Pharm 535(1–2):132–139. https://doi.org/10.1016/j.ijpharm.2017.10.049

    Article  CAS  PubMed  Google Scholar 

  75. Mathavan S, Chen-Tan N, Arfuso F, Al-Salami H (2016) A comprehensive study of novel microcapsules incorporating gliclazide and a permeation enhancing bile acid: hypoglycemic effect in an animal model of Type-1 diabetes. Drug Deliv 23(8):2869–2880. https://doi.org/10.3109/10717544.2015.1110846

    Article  CAS  PubMed  Google Scholar 

  76. von Richter O, Burk O, Fromm MF, Thon KP, Eichelbaum M, Kivisto KT (2004) Cytochrome P450 3A4 and P-glycoprotein expression in human small intestinal enterocytes and hepatocytes: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther 75(3):172–183. https://doi.org/10.1016/j.clpt.2003.10.008

    Article  CAS  Google Scholar 

  77. Riches Z, Stanley EL, Bloomer JC, Coughtrie MW (2009) Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: the SULT “pie”. Drug Metab Dispos 37(11):2255–2261. https://doi.org/10.1124/dmd.109.028399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang N, Sun R, Liao X, Aa J, Wang G (2017) UDP-glucuronosyltransferases (UGTs) and their related metabolic cross-talk with internal homeostasis: a systematic review of UGT isoforms for precision medicine. Pharmacol Res 121:169–183. https://doi.org/10.1016/j.phrs.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  79. Kock K, Brouwer KL (2012) A perspective on efflux transport proteins in the liver. Clin Pharmacol Ther 92(5):599–612. https://doi.org/10.1038/clpt.2012.79

    Article  CAS  PubMed  Google Scholar 

  80. Biber J, Murer H, Mohebbi N, Wagner CA (2014) Renal handling of phosphate and sulfate. Compreh Physiol 4(2):771–792. https://doi.org/10.1002/cphy.c120031

    Article  CAS  Google Scholar 

  81. Swanson HI (2015) Drug metabolism by the host and gut microbiota: a partnership or rivalry? Drug Metab Dispos 43(10):1499–1504. https://doi.org/10.1124/dmd.115.065714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wilson ID, Nicholson JK (2017) Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res 179:204–222. https://doi.org/10.1016/j.trsl.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  83. Thiele ICCM, Heinken A, Fleming RMT (2017) Quantitative systems pharmacology and the personalized drug–microbiota–diet axis. Curr Opin Syst Biol 4:43–52

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hausman DB, DiGirolamo M, Bartness TJ, Hausman GJ, Martin RJ (2001) The biology of white adipocyte proliferation. Obesity Rev 2(4):239–254. https://doi.org/10.1046/j.1467-789x.2001.00042.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by American College of Clinical Pharmacy Research Institute Frontiers Research Award (L-NC) and the University of Washington School of Pharmacy DMTPR funding (YSL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne S. Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, KF., Chan, LN. & Lin, Y.S. PBPK modeling of CYP3A and P-gp substrates to predict drug–drug interactions in patients undergoing Roux-en-Y gastric bypass surgery. J Pharmacokinet Pharmacodyn 47, 493–512 (2020). https://doi.org/10.1007/s10928-020-09701-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-020-09701-4

Keywords

Navigation