Skip to main content

Advertisement

Log in

A review of quantitative modeling of B cell responses to antigenic challenge

  • Review Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

A key role of B cells in the mammalian immune response is the generation of antibodies that serve to protect the organism against antigenic challenges. The same process may also be detrimental in the context of autoimmunity. Several modeling approaches have been applied to this aspect of the immune response, from predicting potential epitopes to describing B cells progress through developmental models and simulating antibody production. Here we review some of the modeling techniques, and summarize models that describe different activation mechanisms for B cells, including T cell dependent and independent models. We focus on viral infection as a prototype system, and briefly describe case studies in other disease areas such as bacterial infection and oncology. We single out aspects of the B cell response for which there are current knowledge gaps. We outline areas in need of further research in modeling applications to ultimately produce a “B cell module” for a complete immune response model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. MacLennan IC (1994) Germinal centers. Annu Rev Immunol 12:117–139

    Article  PubMed  CAS  Google Scholar 

  2. Rundell A et al (1998) The humoral immune response to Haemophilus influenzae type b: a mathematical model based on T-zone and germinal center B-cell dynamics. J Theor Biol 194(3):341–381

    Article  PubMed  CAS  Google Scholar 

  3. Bell GI (1970) Mathematical model of clonal selection and antibody production. Nature 228(5273):739–744

    Article  PubMed  CAS  Google Scholar 

  4. Klein P, Šterzl J, Doležal J (1981) A mathematical model of B lymphocyte differentiation: control by antigen. J Math Biol 13(1):67–86

    Article  PubMed  CAS  Google Scholar 

  5. Funk GA et al (1998) Mathematical model of a virus-neutralizing immunglobulin response. J Theor Biol 195(1):41–52

    Article  PubMed  CAS  Google Scholar 

  6. Perelson AS (2002) Modelling viral and immune system dynamics. Nat Rev Immunol 2(1):28–36

    Article  PubMed  CAS  Google Scholar 

  7. Marino S, Kirschner DE (2004) The human immune response to Mycobacterium tuberculosis in lung and lymph node. J Theor Biol 227(4):463–486

    Article  PubMed  CAS  Google Scholar 

  8. Kirschner D, Panetta JC (1998) Modeling immunotherapy of the tumor–immune interaction. J Math Biol 37(3):235–252

    Article  PubMed  CAS  Google Scholar 

  9. De Boer RJ et al (1985) Macrophage T lymphocyte interactions in the anti-tumor immune response: a mathematical model. J Immunol 134(4):2748–2758

    PubMed  Google Scholar 

  10. Chen X et al (2013) A mathematical model of the effect of immunogenicity on therapeutic protein Pharmacokinetics. AAPS J 15(4):1141–1154

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Chen X, Hickling TP, Vicini P (2014) A mechanistic, multiscale mathematical model of immunogenicity for therapeutic proteins: part 1—theoretical model. CPT: pharmacomet. syst. pharmacol. 3:e133

    CAS  Google Scholar 

  12. Chen X, Hickling TP, Vicini P (2014) A Mechanistic, Multiscale Mathematical Model of Immunogenicity for Therapeutic Proteins: Part 2—Model Applications. CPT: Pharmacomet Syst Pharmacol 3:e134

    CAS  Google Scholar 

  13. Nypaver CM et al (2010) Dynamics of human complement-mediated killing of klebsiella pneumoniae. Am J Respir Cell Mol Biol 43(5):585

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Castiglione F, Liso A (2005) The role of computational models of the immune system in designing vaccination strategies. Immunopharmacol Immunotoxicol 27(3):417–432

    Article  PubMed  Google Scholar 

  15. Halling-Brown M et al (1920) ImmunoGrid: towards agent-based simulations of the human immune system at a natural scale. Philos Transact R Soc A 2010(368):2799–2815

    Google Scholar 

  16. Bauer AL, Beauchemin CAA, Perelson AS (2009) Agent-based modeling of host-pathogen systems: the successes and challenges. Inf Sci 179(10):1379–1389

    Article  Google Scholar 

  17. Narang V et al (2012) Systems immunology: a survey of modeling formalisms, applications and simulation tools. Immunol Res 53(1–3):251–265

    Article  PubMed  CAS  Google Scholar 

  18. Kidd BA et al (2014) Unifying immunology with informatics and multiscale biology. Nat Immunol 15(2):118–127

    Article  PubMed  CAS  Google Scholar 

  19. Brusic V et al (2014) Computational resources for high-dimensional immune analysis from the Human Immunology Project Consortium. Nat Biotech 32(2):146–148

    Article  CAS  Google Scholar 

  20. Ponomarenko JV, Bourne PE (2007) Antibody-protein interactions: benchmark datasets and prediction tools evaluation. BMC Struct Biol 7(1):64

    Article  PubMed  PubMed Central  Google Scholar 

  21. Salimi N et al (2012) The immune epitope database: a historical retrospective of the first decade. Immunology 137(2):117–123

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Zubler RH (2001) Naive and memory B cells in T-cell-dependent and T-independent responses. Springer Semin Immunopathol 23(4):405–419

    Article  PubMed  CAS  Google Scholar 

  23. Dintzis HM, Dintzis RZ, Vogelstein B (1976) Molecular determinants of immunogenicity: the immunon model of immune response. Proc Natl Acad Sci USA 73(10):3671–3675

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Dintzis RZ, Vogelstein B, Dintzis HM (1982) Specific cellular stimulation in the primary immune response: experimental test of a quantized model. Proc Natl Acad Sci USA 79(3):884–888

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Dintzis RZ, Middleton MH, Dintzis HM (1983) Studies on the immunogenicity and tolerogenicity of T-independent antigens. J Immunol 131(5):2196–2203

    PubMed  CAS  Google Scholar 

  26. Sulzer B, Perelson AS (1997) Immunons revisited: binding of multivalent antigens to B cells. Mol Immunol 34(1):63–74

    Article  PubMed  CAS  Google Scholar 

  27. Sulzer B, Perelson AS (1996) Equilibrium binding of multivalent ligands to cells: effects of cell and receptor density. Math Biosci 135(2):147–185

    Article  PubMed  CAS  Google Scholar 

  28. Bhanot G (2004) Results from modeling of B-Cell receptors binding to antigen. Prog Biophys Mol Biol 85(2–3):343–352

    Article  PubMed  CAS  Google Scholar 

  29. Hat B, Kazmierczak B, Lipniacki T (2011) B cell activation triggered by the formation of the small receptor cluster: a computational study. PLoS Comput Biol 7(10):e1002197

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Parker DC (1993) T cell-dependent B cell activation. Annu Rev Immunol 11:331–360

    Article  PubMed  CAS  Google Scholar 

  31. Hege JS, Cole LJ (1966) A mathematical model relating circulating antibody and antibody forming cells. J Immunol 97(1):34–40

    PubMed  CAS  Google Scholar 

  32. Jilek M, Ursinyova Z (1970) On the distribution of the epoch of the first contact of immunocompetent cell with antigen. Folia Microbiol 15(6):492–499

    Article  CAS  Google Scholar 

  33. Jilek M, Ursinyova Z (1970) The probability of contact between the immunocompetent cell and antigen. Folia Microbiol 15(4):294–302

    Article  CAS  Google Scholar 

  34. Jilek M (1971) The number of immunologically activated cells after repeated immunization. (A mathematical model). Folia Microbiol 16(1):12–23

    Article  CAS  Google Scholar 

  35. Bell GI (1970) Mathematical model of clonal selection and antibody production. J Theor Biol 29(2):191–232

    Article  PubMed  CAS  Google Scholar 

  36. Bell GI (1971) Mathematical model of clonal selection and antibody production. II. J Theor Biol 33(2):339–378

    Article  PubMed  CAS  Google Scholar 

  37. Bell GI (1971) Mathematical model of clonal selection and antibody production. 3. The cellular basis of immunological paralysis. J Theor Biol 33(2):378–398

    PubMed  CAS  Google Scholar 

  38. Burnet FM (1959) The clonal selection theory of acquired immunity. The University Press, Cambridge

    Google Scholar 

  39. Jerne NK (1974) Towards a network theory of the immune system. Ann Immunol 125C(1–2):373–389

    CAS  Google Scholar 

  40. Richter PH (1975) A network theory of the immune system. Eur J Immunol 5(5):350–354

    Article  PubMed  CAS  Google Scholar 

  41. Hoffmann GW (1975) A theory of regulation and self-nonself discrimination in an immune network. Eur J Immunol 5(9):638–647

    Article  PubMed  CAS  Google Scholar 

  42. de Boer RJ, Hogeweg P (1989) Idiotypic networks incorporating TB cell co-operation. The conditions for percolation. J Theor Biol 139(1):17–38

    Article  PubMed  Google Scholar 

  43. Carneiro J et al (1996) A model of the immune network with B-T cell co-operation. I-Prototypical structures and dynamics. J Theor Biol 182(4):513–529

    Article  PubMed  CAS  Google Scholar 

  44. Lee HY et al (2009) Simulation and prediction of the adaptive immune response to Influenza A virus infection. J Virol 83(14):7151–7165

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Motta S et al (2005) Modelling vaccination schedules for a cancer immunoprevention vaccine. Immunome Res 1(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kohler B et al (2000) A systematic approach to vaccine complexity using an automaton model of the cellular and humoral immune system: I viral characteristics and polarized responses. Vaccine 19(7–8):862–876

    Article  PubMed  CAS  Google Scholar 

  47. Folcik V, An G, Orosz C (2007) The basic immune simulator: an agent-based model to study the interactions between innate and adaptive immunity. Theor Biol Med Model 4(1):39

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rapin N et al (2010) Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS ONE 5(4):e9862

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pappalardo F et al (2009) ImmunoGrid, an integrative environment for large-scale simulation of the immune system for vaccine discovery, design and optimization. Brief Bioinform 10(3):330–340

    Article  PubMed  CAS  Google Scholar 

  50. Kepler TB, Perelson AS (1993) Cyclic re-entry of germinal center B cells and the efficiency of affinity maturation. Immunol Today 14(8):412–415

    Article  PubMed  CAS  Google Scholar 

  51. Kepler TB, Perelson AS (1993) Somatic hypermutation in B cells: an optimal control treatment. J Theor Biol 164(1):37–64

    Article  PubMed  CAS  Google Scholar 

  52. Oprea M, Perelson AS (1997) Somatic mutation leads to efficient affinity maturation when centrocytes recycle back to centroblasts. J Immunol 158(11):5155–5162

    PubMed  CAS  Google Scholar 

  53. Kesmir C, De Boer RJ (1999) A mathematical model on germinal center kinetics and termination. J Immunol 163:2463–2469

    PubMed  CAS  Google Scholar 

  54. Iber D, Maini PK (2002) A mathematical model for germinal centre kinetics and affinity maturation. J Theor Biol 219(2):153–175

    Article  PubMed  Google Scholar 

  55. Meyer-Hermann M (2002) A mathematical model for the germinal center morphology and affinity maturation. J Theor Biol 216:273–300

    Article  PubMed  Google Scholar 

  56. Coffin JM (1995) HIV population dynamics in vivo - implications for genetic variation pathogenesis and therapy. Sciene 27(5197):483–489

    Article  Google Scholar 

  57. Nowak M, May RM (2000) Virus dynamics: mathematical principles of immunology and virology: mathematical principles of immunology and virology. Oxford university press, USA

    Google Scholar 

  58. Roberts RG (2013) HIV plays and wins a game of brinkmanship. PLoS Biol 11(4):e1001521

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Palsson S et al (2013) The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models. BMC Syst Biol 7:95

    Article  PubMed  PubMed Central  Google Scholar 

  60. Moir S, Fauci AS (2009) B cells in HIV infection and disease. Nat Rev Immunol 9(4):235–245

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Rehermann B (2009) Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence. J Clin Invest 119(7):1745–1754

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Wieland SF, Chisari FV (2005) Stealth and cunning: hepatitis B and hepatitis C viruses. J Virol 79(15):9369–9380

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Malaspina A et al (2002) Human immunodeficiency virus Type 1 bound to B Cells: relationship to virus replicating in CD4+ T Cells and circulating in plasma. J Virol 76(17):8855–8863

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Moir S et al (2004) Decreased survival of B cells of HIV-viremic patients mediated by altered expression of receptors of the TNF superfamily. J Exp Med 200(5):587–599

    Article  CAS  PubMed Central  Google Scholar 

  65. Kovacs JosephA et al (2001) Identification of dynamically distinct subpopulation of T lyphocytes that are differentially affected by HIV. J Exp Med 194(12):1731–1741

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Nagase H et al (2001) Mechanism of hypergammaglobulinemia by HIV infection: circulating memory B-cell reduction with plasmacytosis. Clin Immunol 100(2):250–259

    Article  PubMed  CAS  Google Scholar 

  67. Perelson AS, Kirschner DE, De Boer R (1993) Dynamics of HIV infection of CD4+ T cells. Math Biosci 114(1):81–125

    Article  PubMed  CAS  Google Scholar 

  68. Nguyen L et al (2007) Modeling B Cell Dysfunction in HIV Infection. Arizona State University, Mathematical and Theoretical Biology Institute

    Google Scholar 

  69. Alves BN et al (2014) IkappaBepsilon is a key regulator of B cell expansion by providing negative feedback on cRel and RelA in a stimulus-specific manner. J Immunol 192(7):3121–3132

    Article  PubMed  CAS  Google Scholar 

  70. Bunimovich-Mendrazitsky S, Claude Gluckman J, Chaskalovic J (2011) A mathematical model of combined bacillus Calmette-Guerin (BCG) and interleukin (IL)-2 immunotherapy of superficial bladder cancer. J Theor Biol 277(1):27–40

    Article  PubMed  CAS  Google Scholar 

  71. Babbs CF (2012) Predicting success or failure of immunotherapy for cancer - insights from a clinically applicable mathematical model. Am J Cancer Res 2(2):204–213

    PubMed  Google Scholar 

  72. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481(7381):306–313

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Anderson AR et al (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127(5):905–915

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are Pfizer employees and shareholders. The authors gratefully acknowledge Dr. Catherine Yeh’s support in implementing in MATLAB the published models used for the computer simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyaprakash Nayak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hickling, T.P., Chen, X., Vicini, P. et al. A review of quantitative modeling of B cell responses to antigenic challenge. J Pharmacokinet Pharmacodyn 41, 445–459 (2014). https://doi.org/10.1007/s10928-014-9388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-014-9388-7

Keywords

Navigation