Skip to main content
Log in

Fe(III) Complexed Polydopamine Modified Mg/Al Layered Double Hydroxide Enhances the Removal of Cr(VI) from Aqueous Solutions

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Herein, we report the preparation of Fe(III) complexed polydopamine modified Mg/Al layered double hydroxides composite material (LDHs@PDA-Fe(III)) and its application to the removal of Cr(VI) in aqueous solution. LDHs@PDA-Fe(III) was characterized and analyzed by field-emission scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM–EDS), Fourier transformed infrared (FTIR), X-ray diffraction (XRD), X-ray photoelectron (XPS). The adsorption performance was studied through a series of adsorption experiments. Investigate the effects of pH, time, temperature, concentration and other factors. When C0 = 800 mg/L, T = 308 k and pH 3, the maximum adsorption capacity obtained in the experiment was 683.4 mg/g. In addition, after 5 adsorption cycles, LDHs@PDA-Fe(III) still shows excellent adsorption capacity and stability. Combining adsorption experiments and characterization analysis, it is inferred that the adsorption of Cr(VI) by LDHs@PDA-Fe(III) is the result of the synergistic effect of multiple adsorption mechanisms. Therefore, the efficient removal capacity and excellent stability make LDHs@PDA-Fe(III) an ideal adsorbent for removing Cr(VI) from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li Y, Zhu H, Zhang C, Cheng M, He H (2018) PEI-grafted magnetic cellulose for Cr(VI) removal from aqueous solution. Cellulose 25:4757–4769. https://doi.org/10.1007/s10570-018-1868-2

    Article  CAS  Google Scholar 

  2. Chen H, Zhang Z, Zhong X, Zhuo Z, Tian S, Fu S, Chen Y, Liu Y (2021) Constructing MoS2/Lignin-derived carbon nanocomposites for highly efficient removal of Cr(VI) from aqueous environment. J Hazard Mater 408:124847. https://doi.org/10.1016/j.jhazmat.2020.124847

    Article  CAS  PubMed  Google Scholar 

  3. Bao S, Yang W, Wang Y, Yu Y, Sun Y, Li K (2020) PEI grafted amino-functionalized graphene oxide nanosheets for ultrafast and high selectivity removal of Cr(VI) from aqueous solutions by adsorption combined with reduction: Behaviors and mechanisms. Chem Eng J 399:125762. https://doi.org/10.1016/j.cej.2020.125762

    Article  CAS  Google Scholar 

  4. Kretschmer I, Senn AM, Meichtry JM, Custo G, Halac EB, Dillert R, Bahnemann DW, Litter MI (2019) Photocatalytic reduction of Cr(VI) on hematite nanoparticles in the presence of oxalate and citrate. Appl Catal B 242:218–226. https://doi.org/10.1016/j.apcatb.2018.09.059

    Article  CAS  Google Scholar 

  5. Bandehali S, Parvizian F, Moghadassi AR, Hosseini SM, Shen JN (2020) Fabrication of thin film-PEI nanofiltration membrane with promoted separation performances: Cr, Pb and Cu ions removal from water. J Polym Res. https://doi.org/10.1007/s10965-020-02056-x

    Article  Google Scholar 

  6. Liang M, Ding Y, Zhang Q, Wang D, Li H, Lu L (2020) Removal of aqueous Cr(VI) by magnetic biochar derived from bagasse. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-78142-3

    Article  CAS  Google Scholar 

  7. Shi Y, Shan R, Lu L, Yuan H, Jiang H, Zhang Y, Chen Y (2020) High-efficiency removal of Cr(VI) by modified biochar derived from glue residue. J Clean Prod 254:119935. https://doi.org/10.1016/j.jclepro.2019.119935

    Article  CAS  Google Scholar 

  8. Zhu K, Gao Y, Tan X, Chen C (2016) Polyaniline-modified Mg/Al layered double hydroxide composites and their application in efficient removal of Cr(VI). ACS Sustain Chem Eng 4:4361–4369. https://doi.org/10.1021/acssuschemeng.6b00922

    Article  CAS  Google Scholar 

  9. Yu XY, Luo T, Jia Y, Xu RX, Gao C, Zhang YX, Liu JH, Huang XJ (2012) Three-dimensional hierarchical flower-like Mg-Al-layered double hydroxides: highly efficient adsorbents for As(v) and Cr(vi) removal. Nanoscale 4:3466–3474. https://doi.org/10.1039/c2nr30457k

    Article  CAS  PubMed  Google Scholar 

  10. Luo M, Huang C, Chen F, Chen C, Li H (2020) Removal of aqueous Cr(VI) using magnetic-gelatin supported on Brassica-straw biochar. J Dispers Sci Technol. https://doi.org/10.1080/01932691.2020.1785889

    Article  Google Scholar 

  11. Lu X, Liu X, Zhang W, Wang X, Wang S, Xia T (2019) The residue from the acidic concentrated lithium bromide treated crop residue as biochar to remove Cr (VI). Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.122348

    Article  PubMed  Google Scholar 

  12. Guo J, Li JJ, Wang CC (2019) Adsorptive removal of Cr(VI) from simulated wastewater in MOF BUC-17 ultrafine powder. J Environ Chem Eng 7:102909. https://doi.org/10.1016/j.jece.2019.102909

    Article  CAS  Google Scholar 

  13. Li LL, Feng XQ, Han RP, Zang SQ, Yang G (2017) Cr(VI) removal via anion exchange on a silver-triazolate MOF. J Hazard Mater 321:622–628. https://doi.org/10.1016/j.jhazmat.2016.09.029

    Article  CAS  PubMed  Google Scholar 

  14. Hu B, Ai Y, Jin J, Hayat T, Alsaedi A, Zhuang L, Wang X (2020) Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials. Biochar 2:47–64. https://doi.org/10.1007/s42773-020-00044-4

    Article  Google Scholar 

  15. Zhang W, Qian L, Chen Y, Ouyang D, Han L, Shang X, Li J, Gu M, Chen M (2021) Nanoscale zero-valent iron supported by attapulgite produced at different acid modification: Synthesis mechanism and the role of silicon on Cr(VI) removal. Chemosphere 267:129183. https://doi.org/10.1016/j.chemosphere.2020.129183

    Article  CAS  PubMed  Google Scholar 

  16. Goh KH, Lim TT, Dong Z (2008) Application of layered double hydroxides for removal of oxyanions: A review. Water Res 42:1343–1368. https://doi.org/10.1016/j.watres.2007.10.043

    Article  CAS  PubMed  Google Scholar 

  17. Liu X, Pang H, Liu X, Li Q, Zhang N, Mao L, Qiu M, Hu B, Yang H, Wang X (2021) Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. Innov 2:100076. https://doi.org/10.1016/j.xinn.2021.100076

    Article  Google Scholar 

  18. Huang D, Liu C, Zhang C, Deng R, Wang R, Xue W, Luo H, Zeng G, Zhang Q, Guo X (2019) Cr(VI) removal from aqueous solution using biochar modified with Mg/Al-layered double hydroxide intercalated with ethylenediaminetetraacetic acid. Bioresour Technol 276:127–132. https://doi.org/10.1016/j.biortech.2018.12.114

    Article  CAS  PubMed  Google Scholar 

  19. Xu H, Zhu S, Xia M, Wang F (2021) Rapid and efficient removal of diclofenac sodium from aqueous solution via ternary core-shell CS@PANI@LDH composite: experimental and adsorption mechanism study. J Hazard Mater 402:123815. https://doi.org/10.1016/j.jhazmat.2020.123815

    Article  CAS  PubMed  Google Scholar 

  20. Zhu Y, He X, Xu J, Fu Z, Wu S, Ni J, Hu B (2021) Insight into efficient removal of Cr(VI) by magnetite immobilized with Lysinibacillus sp. JLT12: Mechanism and performance. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.127901

    Article  PubMed  Google Scholar 

  21. Wang Q, Lin Q, Li Q, Li K, Wu L, Li S, Liu H (2021) As(III) removal from wastewater and direct stabilization by in-situ formation of Zn-Fe layered double hydroxides. J Hazard Mater 403:123920. https://doi.org/10.1016/j.jhazmat.2020.123920

    Article  CAS  PubMed  Google Scholar 

  22. Liang L, Xi F, Tan W, Meng X, Hu B, Wang X (2021) Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 3:255–281. https://doi.org/10.1007/s42773-021-00101-6

    Article  Google Scholar 

  23. Li J, Chen S, Xiao H, Yao G, Gu Y, Yang Q, Yan B (2020) Highly efficient removal of Cr(vi) ions from wastewater by the pomegranate-like magnetic hybrid nano-adsorbent of polydopamine and Fe 3 O 4 nanoparticles. New J Chem 44:12785–12792. https://doi.org/10.1039/d0nj01293a

    Article  CAS  Google Scholar 

  24. Lv X, Qin X, Wang K, Peng Y, Wang P, Jiang G (2019) Nanoscale zero valent iron supported on MgAl-LDH-decorated reduced graphene oxide: enhanced performance in Cr(VI) removal, mechanism and regeneration. J Hazard Mater 373:176–186. https://doi.org/10.1016/j.jhazmat.2019.03.091

    Article  CAS  PubMed  Google Scholar 

  25. Furtado LM, Ando RA, Petri DFS (2020) Polydopamine-coated cellulose acetate butyrate microbeads for caffeine removal. J Mater Sci 55:3243–3258. https://doi.org/10.1007/s10853-019-04169-1

    Article  CAS  Google Scholar 

  26. Kallem P, Othman I, Ouda M, Hasan SW, AlNashef I, Banat F (2021) Polyethersulfone hybrid ultrafiltration membranes fabricated with polydopamine modified ZnFe2O4 nanocomposites: applications in humic acid removal and oil/water emulsion separation. Process Saf Environ Prot 148:813–824. https://doi.org/10.1016/j.psep.2021.02.002

    Article  CAS  Google Scholar 

  27. Yang HC, Wu QY, Wan LS, Xu ZK (2013) Polydopamine gradients by oxygen diffusion controlled autoxidation. Chem Commun 49:10522–10524. https://doi.org/10.1039/c3cc46127k

    Article  CAS  Google Scholar 

  28. Zhang Q, Li Y, Yang Q, Chen H, Chen X, Jiao T, Peng Q (2018) Distinguished Cr(VI) capture with rapid and superior capability using polydopamine microsphere: Behavior and mechanism. J Hazard Mater 342:732–740. https://doi.org/10.1016/j.jhazmat.2017.08.061

    Article  CAS  PubMed  Google Scholar 

  29. Zhang C, Ou Y, Lei WX, Wan LS, Ji J, Xu ZK (2016) CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability. Angew Chem Int Ed 55:3054–3057. https://doi.org/10.1002/anie.201510724

    Article  CAS  Google Scholar 

  30. Zhang L, Shi J, Jiang Z, Jiang Y, Meng R, Zhu Y, Liang Y, Zheng Y (2011) Facile preparation of robust microcapsules by manipulating metal-coordination interaction between biomineral layer and bioadhesive layer. ACS Appl Mater Interfaces 3:597–605. https://doi.org/10.1021/am101184h

    Article  CAS  PubMed  Google Scholar 

  31. Zhou D, Yang L, Yu L, Kong J, Yao X, Liu W, Xu Z, Lu X (2015) Fe/N/C hollow nanospheres by Fe(iii)-dopamine complexation-assisted one-pot doping as nonprecious-metal electrocatalysts for oxygen reduction. Nanoscale 7:1501–1509. https://doi.org/10.1039/c4nr06366j

    Article  CAS  PubMed  Google Scholar 

  32. Wilker JJ (2010) The iron-fortified adhesive system of marine mussels. Angew Chem Int Ed 49:8076–8078. https://doi.org/10.1002/anie.201003171

    Article  CAS  Google Scholar 

  33. Chen B, Cao Y, Zhao H, Long F, Feng X, Li J, Pan X (2020) A novel Fe3+-stabilized magnetic polydopamine composite for enhanced selective adsorption and separation of Methylene blue from complex wastewater. J Hazard Mater 392:122263. https://doi.org/10.1016/j.jhazmat.2020.122263

    Article  CAS  PubMed  Google Scholar 

  34. Yu Z, Zhang X, Huang Y (2013) Magnetic chitosan-iron(III) hydrogel as a fast and reusable adsorbent for chromium(VI) removal. Ind Eng Chem Res 52:11956–11966. https://doi.org/10.1021/ie400781n

    Article  CAS  Google Scholar 

  35. Wen T, Wu X, Tan X, Wang X, Xu A (2013) One-pot synthesis of water-swellable Mg-Al layered double hydroxides and graphene oxide nanocomposites for efficient removal of As(V) from aqueous solutions. ACS Appl Mater Interfaces 5:3304–3311. https://doi.org/10.1021/am4003556

    Article  CAS  PubMed  Google Scholar 

  36. Zhu K, Chen C, Xu H, Gao Y, Tan X, Alsaedi A, Hayat T (2017) Cr(VI) reduction and immobilization by core-double-shell structured magnetic Polydopamine@Zeolitic Idazolate frameworks-8 microspheres. ACS Sustain Chem Eng 5:6795–6802. https://doi.org/10.1021/acssuschemeng.7b01036

    Article  CAS  Google Scholar 

  37. Nematollahzadeh A, Seraj S, Mirzayi B (2015) Catecholamine coated maghemite nanoparticles for the environmental remediation: hexavalent chromium ions removal. Chem Eng J 277:21–29. https://doi.org/10.1016/j.cej.2015.04.135

    Article  CAS  Google Scholar 

  38. Zhu J, Tsehaye MT, Wang J, Uliana A, Tian M, Yuan S, Li J, Zhang Y, Volodin A, Van der Bruggen B (2018) A rapid deposition of polydopamine coatings induced by iron (III) chloride/hydrogen peroxide for loose nanofiltration. J Colloid Interface Sci 523:86–97. https://doi.org/10.1016/j.jcis.2018.03.072

    Article  CAS  PubMed  Google Scholar 

  39. Zhao S, Zhan Y, Wan X, He S, Yang X, Hu J, Zhang G (2020) Selective and efficient adsorption of anionic dyes by core/shell magnetic MWCNTs nano-hybrid constructed through facial polydopamine tailored graft polymerization: Insight of adsorption mechanism, kinetic, isotherm and thermodynamic study. J Mol Liq 319:114289. https://doi.org/10.1016/j.molliq.2020.114289

    Article  CAS  Google Scholar 

  40. Shi P, Hu X, Duan M (2021) A UIO-66/tannic acid/chitosan/polyethersulfone hybrid membrane-like adsorbent for the dynamic removal of dye and Cr (VI) from water. J Clean Prod 290:125794. https://doi.org/10.1016/j.jclepro.2021.125794

    Article  CAS  Google Scholar 

  41. Liu P, Wang X, Ma J, Liu H, Ning P (2019) Highly efficient immobilization of NZVI onto bio-inspired reagents functionalized polyacrylonitrile membrane for Cr(VI) reduction. Chemosphere 220:1003–1013. https://doi.org/10.1016/j.chemosphere.2018.12.163

    Article  CAS  PubMed  Google Scholar 

  42. Matusik J, Hyla J, Maziarz P, Rybka K, Leiviskä T (2019) Performance of halloysite-Mg/Al LDH materials for aqueous as(V) and Cr(VI) removal. Materials (Basel) 12:1–16. https://doi.org/10.3390/ma12213569

    Article  CAS  Google Scholar 

  43. Zhang Y, Li M, Li J, Yang Y, Liu X (2019) Surface modified leaves with high efficiency for the removal of aqueous Cr (VI). Appl Surf Sci 484:189–196. https://doi.org/10.1016/j.apsusc.2019.04.088

    Article  CAS  Google Scholar 

  44. Ma L, Shi X, Zhang X, Dong S, Li L (2019) Electrospun cellulose acetate–polycaprolactone/chitosan core-shell nanofibers for the removal of Cr(VI). Phys Status Solidi Appl Mater Sci 216:1–9. https://doi.org/10.1002/pssa.201900379

    Article  CAS  Google Scholar 

  45. Lyu J, Zhang N, Liu H, Zeng Z, Zhang J, Bai P, Guo X (2017) Adsorptive removal of boron by zeolitic imidazolate framework: kinetics, isotherms, thermodynamics, mechanism and recycling. Sep Purif Technol 187:67–75. https://doi.org/10.1016/j.seppur.2017.05.059

    Article  CAS  Google Scholar 

  46. Kwak HW, Lee H, Lee KH (2020) Surface-modified spherical lignin particles with superior Cr(VI) removal efficiency. Chemosphere 239:124733. https://doi.org/10.1016/j.chemosphere.2019.124733

    Article  CAS  PubMed  Google Scholar 

  47. Wang J, Wang P, Wang H, Dong J, Chen W, Wang X, Wang S, Hayat T, Alsaedi A, Wang X (2017) Preparation of molybdenum disulfide coated Mg/Al layered double hydroxide composites for efficient removal of chromium(VI). ACS Sustain Chem Eng 5:7165–7174. https://doi.org/10.1021/acssuschemeng.7b01347

    Article  CAS  Google Scholar 

  48. Sun Y, Yu F, Li L, Ma J (2021) Adsorption-reduction synergistic effect for rapid removal of Cr (VI) ions on superelastic NH2-graphene sponge. Chem Eng J. https://doi.org/10.1016/j.cej.2021.129933

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dong L, Deng R, Xiao H, Chen F, Zhou Y, Li J, Chen S, Yan B (2019) Hierarchical polydopamine coated cellulose nanocrystal microstructures as efficient nanoadsorbents for removal of Cr(VI) ions. Cellulose 26:6401–6414. https://doi.org/10.1007/s10570-019-02529-3

    Article  CAS  Google Scholar 

  50. Wang H, Guo H, Zhang N, Chen Z, Hu B, Wang X (2019) Enhanced photoreduction of U(VI) on C3N4 by Cr(VI) and bisphenol A: ESR, XPS, and EXAFS investigation. Environ Sci Technol 53:6454–6461. https://doi.org/10.1021/acs.est.8b06913

    Article  CAS  PubMed  Google Scholar 

  51. Liu F, Hua S, Wang C, Qiu M, Jin L, Hu B (2021) Adsorption and reduction of Cr(VI) from aqueous solution using cost-effective caffeic acid functionalized corn starch. Chemosphere 279:130539. https://doi.org/10.1016/j.chemosphere.2021.130539

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Luo, M., Chen, F. et al. Fe(III) Complexed Polydopamine Modified Mg/Al Layered Double Hydroxide Enhances the Removal of Cr(VI) from Aqueous Solutions. J Polym Environ 30, 2547–2558 (2022). https://doi.org/10.1007/s10924-022-02375-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02375-8

Keywords

Navigation