Skip to main content

Advertisement

Log in

Hydrophobic and Flame-Retardant Foam Based on Cellulose

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A study aimed to prepare cellulose-based hydrophobic, lightweight, and flame retardant foam composites. Cellulose was activated by phosphoric acid followed by blending with dolomite clay of different loading ratios. Gelatin/tannin as an adhesive system was used as a binder. A solution of the environmentally friendly silicone rubber (RTV) was applied onto foam samples via spray-coating to improve their water repealing performance, which was explored by investigating both of water contacting angle and wettability time of the coated foam samples. Flammability characteristics, thermal decomposition, surface morphology, and chemical structure of treated and untreated foams were investigated by flammability test, thermogravimetric analysis, scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared. The fire retardancy of foam composites was optimized at low and medium loading of dolomite. Also, the addition of RTV improved the hydrophobicity of composites maintained the fire retardancy of composites with medium loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489

    Article  CAS  PubMed  Google Scholar 

  2. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393

    Article  CAS  Google Scholar 

  3. Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26(9):1605–1688

    Article  CAS  Google Scholar 

  4. J.-M. Zhang, J. Wu, J. Yu, X.-C. Zhang, Q.-Y. Mi, J. Zhang (2017) Processing and functionalization of cellulose with ionic liquids. Acta Polym Sin

  5. Read N, Heighway-Bury E (1958) Flameproofing of textile fabrics with particular reference to the function of antimony compounds. J Soc Dyers Colour 74(12):823–829

    Article  CAS  Google Scholar 

  6. Frank AW, Daigle DJ, Vail SL (1982) Chemistry of hydroxymethyl phosphorus compounds: part III. Phosphines, phosphine oxides, and phosphonium hydroxides. Text Res J 52(12):738–750

    Article  CAS  Google Scholar 

  7. Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, Bergström L (2015) Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol 10(3):277–283

    Article  CAS  PubMed  Google Scholar 

  8. Hamedi M, Karabulut E, Marais A, Herland A, Nyström G, Wågberg L (2013) Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew Chem 125(46):12260–12264

    Article  Google Scholar 

  9. Donius AE, Liu A, Berglund LA, Wegst UG (2014) Superior mechanical performance of highly porous, anisotropic nanocellulose–montmorillonite aerogels prepared by freeze casting. J Mech Behav Biomed Mater 37:88–99

    Article  CAS  PubMed  Google Scholar 

  10. González del Campo MM, Darder M, Aranda P, Akkari M, Huttel Y, Mayoral A, Bettini J, Ruiz-Hitzky E (2018) Functional hybrid nanopaper by assembling nanofibers of cellulose and sepiolite. Adv Func Mater 28(27):1703048

    Article  CAS  Google Scholar 

  11. Wang M, Anoshkin IV, Nasibulin AG, Korhonen JT, Seitsonen J, Pere J, Kauppinen EI, Ras RH, Ikkala O (2013) Modifying native nanocellulose aerogels with carbon nanotubes for mechanoresponsive conductivity and pressure sensing. Adv Mater 25(17):2428–2432

    Article  CAS  PubMed  Google Scholar 

  12. Frydrych M, Wan C, Stengler R, O’Kelly KU, Chen B (2011) Structure and mechanical properties of gelatin/sepiolite nanocomposite foams. J Mater Chem 21(25):9103–9111

    Article  CAS  Google Scholar 

  13. Köhnke T, Lin A, Elder T, Theliander H, Ragauskas AJ (2012) Nanoreinforced xylan–cellulose composite foams by freeze-casting. Green Chem 14(7):1864–1869

    Article  CAS  Google Scholar 

  14. Gutiérrez MC, Ferrer ML, del Monte F (2008) Ice-templated materials: Sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem Mater 20(3):634–648

    Article  CAS  Google Scholar 

  15. Carosio F, Kochumalayil J, Cuttica F, Camino G, Berglund L (2015) Oriented clay nanopaper from biobased components—mechanisms for superior fire protection properties. ACS Appl Mater Interfaces 7(10):5847–5856

    Article  CAS  PubMed  Google Scholar 

  16. Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromol 12(3):633–641

    Article  CAS  Google Scholar 

  17. Jakab E, Mészáros E, Borsa J (2010) Effect of slight chemical modification on the pyrolysis behavior of cellulose fibers. J Anal Appl Pyrol 87(1):117–123

    Article  CAS  Google Scholar 

  18. Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7(6):1687–1691

    Article  CAS  Google Scholar 

  19. Gao L, Volpe M, Lucian M, Fiori L, Goldfarb JL (2019) Does hydrothermal carbonization as a biomass pretreatment reduce fuel segregation of coal-biomass blends during oxidation? Energy Convers Manage 181:93–104

    Article  CAS  Google Scholar 

  20. Abdelrahman MS, Khattab TA (2019) Development of one-step water-repellent and flame-retardant finishes for cotton. ChemistrySelect 4(13):3811–3816

    Article  CAS  Google Scholar 

  21. Li X-M, Reinhoudt D, Crego-Calama M (2007) What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36(8):1350–1368

    Article  PubMed  Google Scholar 

  22. Khattab TA, Mowafi S, El-Sayed H (2019) Development of mechanically durable hydrophobic lanolin/silicone rubber coating on viscose fibers. Cellulose 26(17):9361–9371

    Article  CAS  Google Scholar 

  23. Wang G, Li A, Li K, Zhao Y, Ma Y, He Q (2021) A fluorine-free superhydrophobic silicone rubber surface has excellent self-cleaning and bouncing properties. J Colloid Interface Sci 588:175–183

    Article  CAS  PubMed  Google Scholar 

  24. Peng C, Zhang H, You Z, Xu F, Jiang G, Lv S, Zhang R, Yang H (2018) Preparation and anti-icing properties of a superhydrophobic silicone coating on asphalt mixture. Constr Build Mater 189:227–235

    Article  CAS  Google Scholar 

  25. Dacrory S, Abou-Yousef H, Kamel S, Turky G (2019) Development of biodegradable semiconducting foam based on micro-fibrillated cellulose/Cu-NPs. Int J Biol Macromol 132:351–359

    Article  CAS  PubMed  Google Scholar 

  26. Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71(13):1593–1599

    Article  CAS  Google Scholar 

  27. Khattab TA, Mohamed AL, Hassabo AG (2020) Development of durable superhydrophobic cotton fabrics coated with silicone/stearic acid using different cross-linkers. Mater Chem Phys 249:122981

    Article  CAS  Google Scholar 

  28. Horrocks AR, Sitpalan A, Kandola BK (2019) Design and characterisation of bicomponent polyamide 6 fibres with specific locations of each flame retardant component for enhanced flame retardancy. Polym Test 79:106041

    Article  CAS  Google Scholar 

  29. Xie J, Chen T, Xing B, Liu H, Xie Q, Li H, Wu Y (2016) The thermochemical activity of dolomite occurred in dolomite—palygorskite. Appl Clay Sci 119:42–48

    Article  CAS  Google Scholar 

  30. Oliveira ACD, Baltar CAM (2020) Influence of the pH regulator on the dolomite hydrophobization process. REM Int Eng J 73:403–409

    Article  Google Scholar 

  31. Zhou X, Zhang Y, Shi X, Fan D (2017) Preparation, characterization, and preliminary biocompatibility evaluation of carbon ion-implanted silicone rubber. In: Cankaya N (ed) Elastomers. IntechOpen, London

    Google Scholar 

  32. Mi Q-Y, Ma S-R, Yu J, He J-S, Zhang J (2016) Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustain Chem Eng 4(3):656–660

    Article  CAS  Google Scholar 

  33. Ghanadpour M, Wicklein B, Carosio F, Wågberg L (2018) All-natural and highly flame-resistant freeze-cast foams based on phosphorylated cellulose nanofibrils. Nanoscale 10(8):4085–4095

    Article  CAS  PubMed  Google Scholar 

  34. Ghanadpour M, Carosio F, Larsson PT, Wågberg L (2015) Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromol 16(10):3399–3410

    Article  CAS  Google Scholar 

  35. Ji J, Ge Y, Balsam W, Damuth JE, Chen J (2009) Rapid identification of dolomite using a Fourier Transform Infrared Spectrophotometer (FTIR): a fast method for identifying Heinrich events in IODP Site U1308. Mar Geol 258(1–4):60–68

    Article  Google Scholar 

  36. Qiang F, Hu L-L, Gong L-X, Zhao L, Li S-N, Tang L-C (2018) Facile synthesis of super-hydrophobic, electrically conductive and mechanically flexible functionalized graphene nanoribbon/polyurethane sponge for efficient oil/water separation at static and dynamic states. Chem Eng J 334:2154–2166

    Article  CAS  Google Scholar 

  37. Wu Q, Gong L-X, Li Y, Cao C-F, Tang L-C, Wu L, Zhao L, Zhang G-D, Li S-N, Gao J (2018) Efficient flame detection and early warning sensors on combustible materials using hierarchical graphene oxide/silicone coatings. ACS Nano 12(1):416–424

    Article  CAS  PubMed  Google Scholar 

  38. Huang N-J, Cao C-F, Li Y, Zhao L, Zhang G-D, Gao J-F, Guan L-Z, Jiang J-X, Tang L-C (2019) Silane grafted graphene oxide papers for improved flame resistance and fast fire alarm response. Compos B Eng 168:413–420

    Article  CAS  Google Scholar 

  39. Zhang Z-H, Zhang J-W, Cao C-F, Guo K-Y, Zhao L, Zhang G-D, Gao J-F, Tang L-C (2020) Temperature-responsive resistance sensitivity controlled by L-ascorbic acid and silane co-functionalization in flame-retardant GO network for efficient fire early-warning response. Chem Eng J 386:123894

    Article  CAS  Google Scholar 

  40. Salih SI, Oleiwi JK, Ali HM (2019) Modification of silicone rubber by added PMMA and natural nanoparticle used for maxillofacial prosthesis applications. ARPN J Eng Appl Sci 14:781–791

    CAS  Google Scholar 

  41. Mohammadi M, Ghaemi A, Torab-Mostaedi M, Asadollahzadeh M, Hemmati A (2015) Adsorption of cadmium (II) and nickel (II) on dolomite powder. Desalin Water Treat 53(1):149–157

    Article  CAS  Google Scholar 

  42. Shen J, Yao Y, Liu Y, Leng J (2019) Preparation and characterization of CNT films/silicone rubber composite with improved microwave absorption performance. Mater Res Express 6(7):075610

    Article  CAS  Google Scholar 

  43. Delhom C, White-Ghoorahoo L, Pang S (2010) Development and characterization of cellulose/clay nanocomposites. Compos B Eng 41(6):475–481

    Article  CAS  Google Scholar 

  44. Dalawai SP, Aly MAS, Latthe SS, Xing R, Sutar RS, Nagappan S, Ha C-S, Sadasivuni KK, Liu S (2020) Recent advances in durability of superhydrophobic self-cleaning technology: a critical review. Progress Organ Coat 138:105381

    Article  CAS  Google Scholar 

  45. Cao C-F, Zhang G-D, Zhao L, Gong L-X, Gao J-F, Jiang J-X, Tang L-C, Mai Y-W (2019) Design of mechanically stable, electrically conductive and highly hydrophobic three-dimensional graphene nanoribbon composites by modulating the interconnected network on polymer foam skeleton. Compos Sci Technol 171:162–170

    Article  CAS  Google Scholar 

  46. Mao M, Yu K-X, Cao C-F, Gong L-X, Zhang G-D, Zhao L, Song P, Gao J-F, Tang L-C (2022) Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning. Chem Eng J 427:131615

    Article  CAS  Google Scholar 

  47. Cao C-F, Wang P-H, Zhang J-W, Guo K-Y, Li Y, Xia Q-Q, Zhang G-D, Zhao L, Chen H, Wang L (2020) One-step and green synthesis of lightweight, mechanically flexible and flame-retardant polydimethylsiloxane foam nanocomposites via surface-assembling ultralow content of graphene derivative. Chem Eng J 393:124724

    Article  CAS  Google Scholar 

  48. Yu Z-R, Mao M, Li S-N, Xia Q-Q, Cao C-F, Zhao L, Zhang G-D, Zheng Z-J, Gao J-F, Tang L-C (2021) Facile and green synthesis of mechanically flexible and flame-retardant clay/graphene oxide nanoribbon interconnected networks for fire safety and prevention. Chem Eng J 405:126620

    Article  CAS  Google Scholar 

  49. Mao M, Xu H, Guo K-Y, Zhang J-W, Xia Q-Q, Zhang G-D, Zhao L, Gao J-F, Tang L-C (2021) Mechanically flexible, super-hydrophobic and flame-retardant hybrid nano-silica/graphene oxide wide ribbon decorated sponges for efficient oil/water separation and fire warning response. Compos Part A 140:106191

    Article  CAS  Google Scholar 

  50. Zhang G-D, Wu Z-H, Xia Q-Q, Qu Y-X, Pan H-T, Hu W-J, Zhao L, Cao K, Chen E-Y, Yuan Z (2021) Ultrafast flame-induced pyrolysis of poly (dimethylsiloxane) foam materials toward exceptional superhydrophobic surfaces and reliable mechanical robustness. ACS Appl Mater Interfaces 13(19):23161–23172

    Article  CAS  PubMed  Google Scholar 

  51. Cao C-F, Liu W-J, Xu H, Yu K-X, Gong L-X, Guo B-F, Li Y-T, Feng X-L, Lv L-Y, Pan H-T (2021) Temperature-induced resistance transition behaviors of melamine sponge composites wrapped with different graphene oxide derivatives. J Mater Sci Technol 85:194–204

    Article  Google Scholar 

  52. Al-Mosawi A (2016) Flammability of composites. In: Njuguna J (ed) Lightweight composite structures in transport. Elsevier, Amsterdam, pp 361–371

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge this research's financial and technical support from National Research Centre, Egypt, under Grant Number 12010303.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Kamel.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kader, A.H.A., Dacrory, S., Khattab, T.A. et al. Hydrophobic and Flame-Retardant Foam Based on Cellulose. J Polym Environ 30, 2366–2377 (2022). https://doi.org/10.1007/s10924-021-02355-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02355-4

Keywords

Navigation