Skip to main content
Log in

Amidoxime Modified Polymers of Intrinsic Microporosity (PIM-1); A Versatile Adsorbent for Efficient Removal of Charged Dyes; Equilibrium, Kinetic and Thermodynamic Studies

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polymers of Intrinsic Microporosity (PIMs) are recognized as promising polymers for active separation of organic pollutants. These highly porous and solution-processable polymers could be tailored to remove specific targets from an aqueous system. In this study, PIM-1 powder was modified to amidoxime PIM-1 powder and adsorption of charged dyes which are Methylene Blue (MB, cationic) and Methyl Orange (MO, anionic) from an aqueous system was explored to evaluate the influence of contact time, initial concentration, solution pH and temperature on the removal of dyes. The adsorption reached the equilibrium within three hours in a batch adsorption process for both dyes. Experimental adsorption capacity (qe, exp) of Amidoxime PIM-1 was found as 79.8 mg g−1 and 69.8 mg g−1 for MO and MB, respectively at pH 6 and 298 K. The Amidoxime PIM-1 was also able to remove a mixture of anionic and cationic dyes simultaneously from aqueous system. The removal ability is dependent on the solution pH and the selectivity can be tuned by shifting solution pH such as at low pH (pH 3) anionic dye adsorption is more favourable, while at high pH (pH 10) cationic dye adsorption is preferable. Equilibrium data acquired from batch adsorption experiments have been examined by four two-parameter (Langmuir, Freundlich, Temkin and Dubinin–Radushkevich), four three-parameter (Redlich–Peterson, Sips, Khan and Liu) isotherm models, and by kinetic models such as the pseudo-first-order, the pseudo-second-order, Elovich equation and intraparticle diffusion using non-linear regression technique. Combination of several errors analysis techniques was applied to find the best fitting isotherm and kinetic models. Liu isotherm was the best to define the experimental data and the maximum adsorption capacities (qm) were calculated as 86.7 mg g−1 and 81.3 mg g−1 for MO and MB, respectively at pH 6 and 298 K. Adsorption data have the best consistency with the pseudo-second-order kinetic model. Furthermore, thermodynamic parameters were determined and the experiments suggested that the adsorption of MB and MO onto Amidoxime PIM-1 is a physical, spontaneous and exothermic.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kurczewska J, Cegłowski M, Schroeder G (2019) Alginate/PAMAM dendrimer—halloysite beads for removal of cationic and anionic dyes. Int J Biol Macromol 123:398–408

    Article  CAS  PubMed  Google Scholar 

  2. Kale RD, Kane PB (2019) Colour removal of phthalocyanine based reactive dye by nanoparticles. Groundw Sustain Dev 8:309–318

    Article  Google Scholar 

  3. Patra G, Barnwal R, Behera SK, Meikap BC (2018) Removal of dyes from aqueous solution by sorption with fly ash using a hydrocyclone. J Environ Chem Eng 6:5204–5211

    Article  CAS  Google Scholar 

  4. Pandey N, Shukla SK, Singh NB (2017) Water purification by polymer nanocomposites: an overview. Nanocomposites 3:47–66

    Article  CAS  Google Scholar 

  5. Kanmani P, Aravind J, Kamaraj M, Sureshbabu P, Karthikeyan S (2017) Environmental applications of chitosan and cellulosic biopolymers: a comprehensive outlook. Bioresour Technol 242:295–303

    Article  CAS  PubMed  Google Scholar 

  6. Reddy DHK, Lee SM (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interface Sci 201–202:68–93

    Article  CAS  PubMed  Google Scholar 

  7. Tan KB, Vakili M, Horri BA, Poh PE, Abdullah AZ, Salamatinia B (2015) Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms. Sep Purif Technol 150:229–242

    Article  CAS  Google Scholar 

  8. Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280:1–13

    Article  CAS  Google Scholar 

  9. Demirbas A (2009) Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. J Hazard Mater 167:1–9

    Article  CAS  PubMed  Google Scholar 

  10. Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dye-containing effluents: a review. Bioresour Technol 58:217–227

    Article  CAS  Google Scholar 

  11. Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigm 58:179–196

    Article  CAS  Google Scholar 

  12. Lau WJ, Ismail AF (2009) Polymeric nanofiltration membranes for textile dye wastewater treatment: preparation, performance evaluation, transport modelling, and fouling control—a review. Desalination 245:321–348

    Article  CAS  Google Scholar 

  13. Ali H (2010) Biodegradation of synthetic dyes—a review. Water Air Soil Pollut 213:251–273

    Article  CAS  Google Scholar 

  14. Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manag 93:154–168

    Article  CAS  Google Scholar 

  15. Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409:4141–4166

    Article  CAS  PubMed  Google Scholar 

  16. Ahmad A, Mohd-Setapar SH, Chuong CS, Khatoon A, Wani WA, Kumar R, Rafatullah M (2015) Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Adv 5:30801–30818

    Article  CAS  Google Scholar 

  17. Singh NB, Nagpal G, Agrawal S (2018) Rachna, water purification by using adsorbents: a review. Environ Technol Innov 11:187–240

    Article  Google Scholar 

  18. Kyzas GZ, Bikiaris DN, Mitropoulos AC (2017) Chitosan adsorbents for dye removal: a review. Polym Int 66:1800–1811

    Article  CAS  Google Scholar 

  19. Sun L, Chen D, Wan S, Yu Z (2018) Adsorption studies of dimetridazole and metronidazole onto biochar derived from sugarcane bagasse: kinetic, equilibrium, and mechanisms. J Polym Environ 26:765–777

    Article  CAS  Google Scholar 

  20. Murugesan A, Divakaran M, Raveendran P, Nitin Nikamanth AB, Thelly KJ (2019) An eco-friendly porous poly(imide-ether)s for the efficient removal of methylene blue: adsorption kinetics, isotherm, thermodynamics and reuse performances. J Polym Environ 27:1007–1024

    Article  CAS  Google Scholar 

  21. Budd PM, Ghanem BS, Makhseed S, McKeown NB, Msayib KJ, Tattershall CE (2004) Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem Commun. https://doi.org/10.1039/B311764B

    Article  Google Scholar 

  22. McKeown NB, Budd PM, Msayib KJ, Ghanem BS, Kingston HJ, Tattershall CE, Makhseed S, Reynolds KJ, Fritsch D (2005) Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials. Chem-Eur J 11:2610–2620

    Article  CAS  PubMed  Google Scholar 

  23. Satilmis B, Budd PM (2017) Selective dye adsorption by chemically-modified and thermally-treated polymers of intrinsic microporosity. J Colloid Interface Sci 492:81–91

    Article  CAS  PubMed  Google Scholar 

  24. Tsarkov S, Khotimskiy V, Budd PM, Volkov V, Kukushkina J, Volkov A (2012) Solvent nanofiltration through high permeability glassy polymers: effect of polymer and solute nature. J Membr Sci 423–424:65–72

    Article  CAS  Google Scholar 

  25. Satilmis B, Uyar T (2018) Removal of aniline from air and water by polymers of intrinsic microporosity (PIM-1) electrospun ultrafine fibers. J Colloid Interface Sci 516:317–324

    Article  CAS  PubMed  Google Scholar 

  26. Pan Y, Zhang LJ, Li ZJ, Ma LJ, Zhang YF, Wang J, Meng JQ (2018) Hierarchical porous membrane via electrospinning PIM-1 for micropollutants removal. Appl Surf Sci 443:441–451

    Article  CAS  Google Scholar 

  27. Zhang CL, Li P, Cao B (2016) Electrospun polymer of intrinsic microporosity fibers and their use in the adsorption of contaminants from a nonaqueous system. J Appl Polym Sci. https://doi.org/10.1002/app.43475

    Article  Google Scholar 

  28. Wu XM, Zhang QG, Soyekwo F, Liu QL, Zhu AM (2016) Pervaporation removal of volatile organic compounds from aqueous solutions using the highly permeable PIM-1 membrane. AlChE J 62:842–851

    Article  CAS  Google Scholar 

  29. Satilmis B, Budd PM (2014) Base-catalysed hydrolysis of PIM-1: amide versus carboxylate formation. RSC Adv 4:52189–52198

    Article  CAS  Google Scholar 

  30. Satilmis B, Alnajrani MN, Budd PM (2015) Hydroxyalkylaminoalkylamide PIMs: selective adsorption by ethanolamine- and diethanolamine-modified PIM-1. Macromolecules 48:5663–5669

    Article  CAS  Google Scholar 

  31. Satilmis B, Uyar T (2018) Amine modified electrospun PIM-1 ultrafine fibers for an efficient removal of methyl orange from an aqueous system. Appl Surf Sci 453:220–229

    Article  CAS  Google Scholar 

  32. Satilmis B, Budd PM, Uyar T (2017) Systematic hydrolysis of PIM-1 and electrospinning of hydrolyzed PIM-1 ultrafine fibers for an efficient removal of dye from water. React Funct Polym 121:67–75

    Article  CAS  Google Scholar 

  33. Ramakrishna S, Fujihara K, Teo W-E, Lim T-C, Ma Z (2005) An introduction to electrospinning and nanofibers. World Scientific

  34. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347

    Article  CAS  PubMed  Google Scholar 

  35. Satilmis B, Isık T, Demir MM, Uyar T (2019) Amidoxime functionalized polymers of intrinsic microporosity (PIM-1) electrospun ultrafine fibers for rapid removal of uranyl ions from water. Appl Surf Sci 467–468:648–657

    Article  CAS  Google Scholar 

  36. Sihn YH, Byun J, Patel HA, Lee W, Yavuz CT (2016) Rapid extraction of uranium ions from seawater using novel porous polymeric adsorbents. RSC Adv 6:45968–45976

    Article  CAS  Google Scholar 

  37. Patel HA, Yavuz CT (2012) Noninvasive functionalization of polymers of intrinsic microporosity for enhanced CO2 capture. Chem Commun 48:9989–9991

    Article  CAS  Google Scholar 

  38. Abels C, Carstensen F, Wessling M (2013) Membrane processes in biorefinery applications. J Membr Sci 444:285–317

    Article  CAS  Google Scholar 

  39. Ren Q, Xing H, Bao Z, Su B, Yang Q, Yang Y, Zhang Z (2013) Recent advances in separation of bioactive natural products. Chin J Chem Eng 21:937–952

    Article  CAS  Google Scholar 

  40. Topuz F, Satilmis B, Uyar T (2019) Electrospinning of uniform nanofibers of Polymers of Intrinsic Microporosity (PIM-1): the influence of solution conductivity and relative humidity. Polymer 178:121610

    Article  CAS  Google Scholar 

  41. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434

    Article  CAS  Google Scholar 

  42. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  43. Günay A, Arslankaya E, Tosun İ (2007) Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J Hazard Mater 146:362–371

    Article  CAS  PubMed  Google Scholar 

  44. Budd PM, Msayib KJ, Tattershall CE, Ghanem BS, Reynolds KJ, McKeown NB, Fritsch D (2005) Gas separation membranes from polymers of intrinsic microporosity. J Membr Sci 251:263–269

    Article  CAS  Google Scholar 

  45. Budd PM, McKeown NB, Fritsch D (2006) Polymers of intrinsic microporosity (PIMs): high free volume polymers for membrane applications. Macromol Symp 245:403–405

    Article  CAS  Google Scholar 

  46. Vopicka O, Friess K, Hynek V, Sysel P, Zgazar M, Sipek M, Pilnacek K, Lanc M, Jansen JC, Mason CR, Budd PM (2013) Equilibrium and transient sorption of vapours and gases in the polymer of intrinsic microporosity PIM-1. J Membr Sci 434:148–160

    Article  CAS  Google Scholar 

  47. Anokhina TS, Yushkin AA, Budd PM, Volkov AV (2015) Application of PIM-1 for solvent swing adsorption and solvent recovery by nanofiltration. Sep Purif Technol 156:683–690

    Article  CAS  Google Scholar 

  48. Wang Y, McKeown NB, Msayib KJ, Turnbull GA, Samuel IDW (2011) Laser chemosensor with rapid responsivity and inherent memory based on a polymer of intrinsic microporosity. Sensors (Basel, Switzerland) 11:2478–2487

    Article  CAS  Google Scholar 

  49. Short R, Carta M, Bezzu CG, Fritsch D, Kariuki BM, McKeown NB (2011) Hexaphenylbenzene-based polymers of intrinsic microporosity. Chem Commun 47:6822–6824

    Article  CAS  Google Scholar 

  50. Mackintosh HJ, Budd PM, McKeown NB (2008) Catalysis by microporous phthalocyanine and porphyrin network polymers. J Mater Chem 18:573–578

    Article  CAS  Google Scholar 

  51. Xia FJ, Pan M, Mu SC, Malpass-Evans R, Carta M, McKeown NB, Attard GA, Brew A, Morgan DJ, Marken F (2014) Polymers of intrinsic microporosity in electrocatalysis: novel pore rigidity effects and lamella palladium growth. Electrochim Acta 128:3–9

    Article  CAS  Google Scholar 

  52. Ma H, Kong A, Ji Y, He B, Song Y, Li J (2019) Ultrahigh adsorption capacities for anionic and cationic dyes from wastewater using only chitosan. J Clean Prod 214:89–94

    Article  CAS  Google Scholar 

  53. Igberase E, Ofomaja A, Osifo PO (2019) Enhanced heavy metal ions adsorption by 4-aminobenzoic acid grafted on chitosan/epichlorohydrin composite: kinetics, isotherms, thermodynamics and desorption studies. Int J Biol Macromol 123:664–676

    Article  CAS  PubMed  Google Scholar 

  54. Harrache Z, Abbas M, Aksil T, Trari M (2019) Thermodynamic and kinetics studies on adsorption of Indigo Carmine from aqueous solution by activated carbon. Microchem J 144:180–189

    Article  CAS  Google Scholar 

  55. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe, Handlingar, 24, Kungliga svenska vetenskapsakademiens. Band 24:1–39

    Google Scholar 

  56. Ho YS, McKay G (1999) Pseudo-second-order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  57. McLintock IS (1967) The Elovich Equation in chemisorption kinetics. Nature 216:1204–1205

    Article  CAS  Google Scholar 

  58. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89:31–60

    Google Scholar 

  59. Khan EA, Shahjahan TA, Khan TA (2018) Adsorption of methyl red on activated carbon derived from custard apple (Annona squamosa) fruit shell: equilibrium isotherm and kinetic studies. J Mol Liq 249:1195–1211

    Article  CAS  Google Scholar 

  60. Liu Y, Liu X, Dong W, Zhang L, Kong Q, Wang W (2017) Efficient adsorption of sulfamethazine onto modified activated carbon: a plausible adsorption mechanism. Sci Rep 7:12437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lima ÉC, Adebayo MA, Machado FM (2015) Carbon nanomaterials as adsorbents for environmental and biological applications. Brazil

  62. Özcan A, Öncü EM, Özcan AS (2006) Adsorption of Acid Blue 193 from aqueous solutions onto DEDMA-sepiolite. J Hazard Mater 129:244–252

    Article  CAS  PubMed  Google Scholar 

  63. Ahmadi M, Mohammadian M, Khosravi-Nikou MR, Baghban A (2019) Experimental, kinetic, and thermodynamic studies of adsorptive desulfurization and denitrogenation of model fuels using novel mesoporous materials. J Hazard Mater 374:129–139

    Article  CAS  PubMed  Google Scholar 

  64. Langmuir I (1916) The Constitution and fundamental properties of solids and liquids. Part I solids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  65. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    CAS  Google Scholar 

  66. Tempkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim USSR 12:327–356

    Google Scholar 

  67. Dubinin MM, Radushkevich LV (1947) The equation of the characteristic curve of activated charcoal. Proc Acad Sci USSR Phys Chem Sect 55:331–337

    Google Scholar 

  68. Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63:1024–1024

    Article  CAS  Google Scholar 

  69. Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16:490–495

    Article  CAS  Google Scholar 

  70. Khan AR, Ataullah R, Al-Haddad A (1997) Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures. J Colloid Interface Sci 194:154–165

    Article  CAS  PubMed  Google Scholar 

  71. Liu Y, Xu H, Yang S-F, Tay J-H (2003) A general model for biosorption of Cd2+, Cu2+ and Zn2+ by aerobic granules. J Biotechnol 102:233–239

    Article  CAS  PubMed  Google Scholar 

  72. Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M (2006) Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J Hazard Mater 133:304–308

    Article  CAS  PubMed  Google Scholar 

  73. Dubinin MM (1960) The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem Rev 60:235–241

    Article  CAS  Google Scholar 

  74. Hu Q, Zhang Z (2019) Application of Dubinin-Radushkevich isotherm model at the solid/solution interface: a theoretical analysis. J Mol Liq 277:646–648

    Article  CAS  Google Scholar 

  75. Ada K, Ergene A, Tan S, Yalçın E (2009) Adsorption of Remazol Brilliant Blue R using ZnO fine powder: equilibrium, kinetic and thermodynamic modeling studies. J Hazard Mater 165:637–644

    Article  CAS  PubMed  Google Scholar 

  76. Ghosal PS, Gupta AK (2017) Determination of thermodynamic parameters from Langmuir isotherm constant-revisited. J Mol Liq 225:137–146

    Article  CAS  Google Scholar 

  77. Fu J, Zhu J, Wang Z, Wang Y, Wang S, Yan R, Xu Q (2019) Highly-efficient and selective adsorption of anionic dyes onto hollow polymer microcapsules having a high surface-density of amino groups: Isotherms, kinetics, thermodynamics and mechanism. J Colloid Interface Sci 542:123–135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Aslihan Gunel for her technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bekir Satilmis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satilmis, B. Amidoxime Modified Polymers of Intrinsic Microporosity (PIM-1); A Versatile Adsorbent for Efficient Removal of Charged Dyes; Equilibrium, Kinetic and Thermodynamic Studies. J Polym Environ 28, 995–1009 (2020). https://doi.org/10.1007/s10924-020-01664-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01664-4

Keywords

Navigation