Skip to main content
Log in

Biodegradation Behavior of Poly (Lactic Acid) (PLA), Poly (Butylene Adipate-Co-Terephthalate) (PBAT), and Their Blends Under Digested Sludge Conditions

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This paper presents a study on the degradation of Poly (lactic acid) (PLA), Poly (butylene abdicate—terephthalate) (PBAT) and their blends with different proportions in the environment of digested sludge. The degradation rates of PLA and PBAT were obtained through anaerobic reaction device. The samples obtained at regular intervals were measured and analyzed by differential scanning calorimeter (DSC), infrared spectrometer (FTIR) and scanning electron microscope (SEM) respectively. The results showed that the degradation rate of PLA was higher than that of PBAT under the same degradation environment and degradation time. DSC results showed that the degradation rate of PLA in the amorphous phase was slowed by the influence of PBAT. The characteristic peaks of the materials on the infrared spectrum shifted after degradation which implicit the degradation occurs. At the microscopic level, numerous protruding ribs in the material can be seen in the electron micrograph. Obviously, the samples can be degraded under the environment of digested sludge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501

    Google Scholar 

  2. Musioł M, Sikorska W, Janeczek H, Wałach W, Hercog A, Johnston B, Rydz J (2018) (Bio)degradable polymeric materials for a sustainable future—part 1. Organic recycling of PLA/PBAT blends in the form of prototype packages with long shelf-life. Waste Manage 77:447–454

    Google Scholar 

  3. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18(2):84–95

    CAS  Google Scholar 

  4. Otey FH, Mark AM, Mehltretter CL, Russell CR (1974) Starch-based film for degradable agricultural mulch. Ind Eng Chem Prod Res Dev 13(1):90–92

    CAS  Google Scholar 

  5. Otey FH, Westhoff RP, Russell CR (1977) Biodegradable films from starch and ethylene-acrylic acid copolymer. Ind Eng Chem Prod Res Dev 16(4):305–308

    CAS  Google Scholar 

  6. Castro-Aguirre E, Auras R, Selke S, Rubino M, Marsh T (2018) Enhancing the biodegradation rate of poly(Lactic acid) films and PLA bio-nanocomposites in simulated composting through bioaugmentation. Polym Degrad Stab 154:46–54

    CAS  Google Scholar 

  7. Ho KLG, Pometto AL, Gadea-Rivas A, Briceño JA (1999) Augusto Rojas, degradation of polylactic acid (PLA) plastic in costa rican soil and iowa state university compost rows. J Environ Polym Degrad 7(4):173–177

    CAS  Google Scholar 

  8. Maurizio T, Miriam W, Michela S (2012) Laboratory test methods to determine the degradation of plastics in marine environmental conditions. Front Microbiol 3:225

    Google Scholar 

  9. Stoleru E, Hitruc EG, Vasile C, Oprică L (2017) Biodegradation of poly(lactic acid)/chitosan stratified composites in presence of the Phanerochaete chrysosporium fungus. Polym Degrad Stab 143:118–129

    CAS  Google Scholar 

  10. Badia JD, Strömberg E, Kittikorn T, Ek M, Karlsson S, Ribes-Greus A (2017) Relevant factors for the eco-design of polylactide/sisal biocomposites to control biodegradation in soil in an end-of-life scenario. Polym Degrad Stab 143:9–19

    CAS  Google Scholar 

  11. Karamanlioglu M, Robson GD (2013) The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polym Degrad Stab 98(10):2063–2071

    CAS  Google Scholar 

  12. Pattanasuttichonlakul W, Sombatsompop N, Prapagdee B (2018) Accelerating biodegradation of PLA using microbial consortium from dairy wastewater sludge combined with PLA-degrading bacterium. Int Biodeterior Biodegrad 132:74–83

    CAS  Google Scholar 

  13. Zhu DP (2009) Development and recycling for plastics packaging waste. Shanghai Plast 147(3):25–29

    Google Scholar 

  14. Roohi K, Bano M, Kuddus MR, Zaheer Q, Zia KM, Farhan GM, Ashraf G (2017) Aliev, Microbial enzymatic degradation of biodegradable plastics. Curr Pharm Biotechnol 18(5):429

    CAS  PubMed  Google Scholar 

  15. Fortunati E, Armentano I, Iannoni A, Kenny JM (2010) Development and thermal behaviour of ternary PLA matrix composites. Polymer Degrad Stab 95(11):2200–2206

    CAS  Google Scholar 

  16. Vieira AC, Marques AT, Guedes RM, Tita V (2011) Material model proposal for biodegradable materials. Proc Eng 10(7):1597–1602

    CAS  Google Scholar 

  17. Souza PMS, Corroqué NA, Morales AR, Marin-Morales MA, Mei LHI (2013) PLA and Organoclays nanocomposites: degradation process and evaluation of ecotoxicity using allium cepa as test organism. J Polym Environ 21(4):1052–1063

    CAS  Google Scholar 

  18. Rafael A, Bruce H, Susan S (2010) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864

    Google Scholar 

  19. Weng Y, Jin L, Xu G (2010) Status of biomass and biodegradable plastics in China. China Chem Rep 2010(6):27–29

    Google Scholar 

  20. Xiang Q, Ren Y, Wang X (2017) New advances in the biodegradation of Poly(lactic) acid. Int Biodeter Biodegrad 117:215–223

    Google Scholar 

  21. Gironi F, Piemonte V (2013) Kinetics of hydrolytic degradation of PLA. J Polym Environ 21(2):313–318.

    Google Scholar 

  22. Andrade MFCD, Souza PMS, Cavalett O, Morales AR (2016) Life cycle assessment of poly(lactic acid) (PLA): comparison between chemical recycling, mechanical recycling and composting. J Polym Environ 24(4):372–384

    Google Scholar 

  23. Shogren RL, Doane WM, Garlotta D, Lawton JW, Willett JL (2003) Biodegradation of starch/polylactic acid/poly(hydroxyester-ether) composite bars in soil. Polym Degrad Stab 79(3):405–411

    CAS  Google Scholar 

  24. Iñiguezfranco F, Auras R, Rubino M, Dolan K, Sotovaldez H, Selke S (2017) Effect of nanoparticles on the hydrolytic degradation of PLA-nanocomposites by water-ethanol solution. Polym Degrad Stab 146:287–297

    Google Scholar 

  25. Weber CJ, Haugaard V, Festersen R, Bertelsen G (2002) Production and applications of biobased packaging materials for the food industry. Food Addit Contam 19:172–177

    CAS  PubMed  Google Scholar 

  26. Fupeng YE (2016) LCA on CO2 from PLA. Energy and Energy Conservation 132(9):80–81

    Google Scholar 

  27. Arrieta MP, Samper MD, Aldas M, López J (2017) On the Use of PLA-PHB Blends for sustainable food packaging applications. Materials 10(9):1008

    PubMed Central  Google Scholar 

  28. Fukushima K, Tabuanib D, Arena M, Rizzarelli P (2011) Preparation, characterization and biodegradation of biopolymer nanocomposites based on fumed silica. Eur Polym J 47(2):139–152

    CAS  Google Scholar 

  29. Velde KVD, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Test 21(4):433–442

    Google Scholar 

  30. Okamoto K, Ichikawa T, Yokohara T, Yamaguchi M (2009) miscibility, mechanical and thermal properties of poly(lactic acid)/polyester-diol blends. Eur Polym J 45(8):2304–2312

    CAS  Google Scholar 

  31. Liu GC, He YS, Zeng JB, Li QT, Wang YZ (2014) Fully biobased and supertough polylactide-based thermoplastic vulcanizates fabricated by peroxide-induced dynamic vulcanization and interfacial compatibilization. Biomacromol 15(11):4260–4271

    CAS  Google Scholar 

  32. Wang M, Wu Y, Li YD, Zeng JB (2017) Progress in toughening poly(lactic acid) with renewable polymers. Polym Rev 57(4):557–593

    CAS  Google Scholar 

  33. Si WJ, Yang L, Zhu J, Li YD, Zeng JB (2019) Highly toughened and heat-resistant poly(L-lactide) materials through interfacial interaction control via chemical structure of biodegradable elastomer. Appl Surf Sci 483:1090–1100

    CAS  Google Scholar 

  34. Han JJ, Huang HX (2015) Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends. J Appl Polym Sci 120(6):3217–3223

    Google Scholar 

  35. Yun H, Zhang C, Pan Y, Zhou Y, Long J, Yi D (2013) Effect of NR on the hydrolytic degradation of PLA. Polym Degrad Stab 98(5):943–950

    Google Scholar 

  36. Oyama HT (2009) Super-tough poly(lactic acid) materials: reactive blending with ethylene copolymer. Polymer 50(3):747–751

    CAS  Google Scholar 

  37. Zhang W, Chen L, Zhang Y (2009) Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer. Polymer 50(5):1311–1315

    CAS  Google Scholar 

  38. Liu GC, He YS, Zeng JB, Xu Y, Wang YZ (2014) In situ formed crosslinked polyurethane toughened polylactide. Polym Chem 5(7):2530–2539

    CAS  Google Scholar 

  39. Zhao TH, He Y, Li YD, Wang M, Zeng JB (2016) Dynamic vulcanization of castor oil in polylactide matrix for toughening. RSC Adv 6(83):79542–79553

    CAS  Google Scholar 

  40. Zhao TH, Yuan WQ, Li YD, Weng YX, Zeng JB (2018) Relating chemical structure to toughness via morphology control in fully sustainable sebacic acid cured epoxidized soybean oil toughened polylactide blends. Macromolecules 51(5):2027–2037

    CAS  Google Scholar 

  41. Kumar M, Mohanty S, Nayak SK, Parvaiz MR (2010) Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresour Technol 101(21):8406–8415

    CAS  PubMed  Google Scholar 

  42. Yue D, Bo L, Wang P, Wang G, Ji J (2018) PLA-PBAT-PLA tri-block copolymers: effective compatibilizers for promotion of the mechanical and rheological properties of PLA/PBAT blends. Polym Degrad Stab 147:41–48

    Google Scholar 

  43. Liu H, Zhang J (2011) Research progress in toughening modification of poly(lactic acid). J Polym Sci B 49(15):1051–1083

    CAS  Google Scholar 

  44. Alitry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97(10):1898–1914

    CAS  Google Scholar 

  45. Long J, Wolcott MP, Jinwen Z (2006) Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromol 7(1):199–207

    Google Scholar 

  46. Si Peng HN, Yang L, Yihui Z, Jifei Y, Fangfang W, Yingzhe Q (2016) Preparation and degradation properties of PLA/PBAT film. Plast Sci Technol 43(10):68–72.

    Google Scholar 

  47. Palsikowski PA, Kuchnier CN, Pinheiro IF, Morales AR (2018) Biodegradation in soil of PLA/PBAT blends compatibilized with chain extender. J Polym Environ 26:330–341

    CAS  Google Scholar 

  48. Oyama HT, Tanaka Y, Hirai S, Shida S, Kadosaka A (2011) Water-disintegrative and biodegradable blends containing poly(L-lactic acid) and poly(butylene adipate-co-terephthalate). J Polym Sci B 49(5):342–354

    CAS  Google Scholar 

  49. Kale G, Auras R, Singh SP, Narayan R (2007) Biodegradability of polylactide bottles in real and simulated composting conditions. Polym Test 26(8):1049–1061

    CAS  Google Scholar 

  50. Hao W, Wei D, Zheng A, Xiao H (2015) Soil burial biodegradation of antimicrobial biodegradable PBAT films. Polym Degrad Stab 116(2):14–22

    Google Scholar 

  51. Weng YX, Jin YJ, Meng QY, Wang L, Zhang M, Wang YZ (2013) Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym Test 32(5):918–926

    CAS  Google Scholar 

  52. T.C. /Sc, ISO/DIS 13975 - Plastics—Determination of the ultimate anaerobic biodegradation of plastic materials in controlled slurry digestion systems—Method by measurement of biogas production.

  53. Zhang M, Meng QY, Diao XQ, Weng YX (2016) Biodegradation behavior of PLA/PBAT blends. China Plast 30(8):79–86

    Google Scholar 

Download references

Acknowledgements

The work is supported by National Natural Science Foundation of China (NSFC) with the Grant No. 51601002 and The Science and Technology Development Project of Beijing Municipal Commission of Education (Grant No. SQKM201710011003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Hu or Yunxuan Weng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Hu, J., Yang, M. et al. Biodegradation Behavior of Poly (Lactic Acid) (PLA), Poly (Butylene Adipate-Co-Terephthalate) (PBAT), and Their Blends Under Digested Sludge Conditions. J Polym Environ 27, 2784–2792 (2019). https://doi.org/10.1007/s10924-019-01563-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01563-3

Keywords

Navigation