Skip to main content
Log in

Recycling Ability of Biodegradable Matrices and Their Cellulose-Reinforced Composites in a Plastic Recycling Stream

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The effect of multiple injection-moulding reprocessing of three biodegradable matrices on their mechanical properties, melt flow rate, molecular weight, phase transition temperatures and degradation temperature is presented. It has been found that, with successive reprocessing, tensile, flexural and impact strength decreased. Drop in mechanical properties has been assigned to degradation of the matrices, as corroborated by melt flow and molecular weight analysis. Although reprocessing did not significantly affect the glass transition, it diminished the melting point and degradation temperature of polymers. Results indicate that neat PLLA can be recycled for up to five times without suffering a drastic loss in mechanical and thermal properties. The aliphatic polyester Mater-Bi TF01U/095R can be recycled for up to 10 times, whilst starch-based Mater-Bi YI014U/C wastes should be destined to composting, since its recyclability is very poor. The effect of reprocessing on composites reinforced with chemithermomechanical pulp (CTMP) followed the tendencies observed for the neat matrices. Whilst CTMP-fibres behave mainly as filler in PLLA composites, reinforced thermoplastic starch-based composites presented enhanced mechanical properties and recyclability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Techno-economic feasibility of large-scale production of bio-based polymers in Europe, Technical report EUR22103

  2. Albertsson AC, Andersson SO, Karlsson S (1987) Polym Degrad Stab 18:73–87

    Article  CAS  Google Scholar 

  3. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biotechnol Adv 26:246–265

    Article  CAS  Google Scholar 

  4. Siracusa V, Rocculi P, Romani S, Dalla M (2008) Rosa Trends Food Sci Tech 19:634–643

    Article  CAS  Google Scholar 

  5. Sorrentino A, Gorrasi G, Vittoria V (2007) Trends Food Sci Tech 18:84–95

    Article  CAS  Google Scholar 

  6. Averous L, Halley PJ (2009) Biofuel Bioprod Bior 3:329–343

    Article  CAS  Google Scholar 

  7. Rouilly A, Rigal L (2002) J Macromol Sci Pol R C42:441–479

    Article  CAS  Google Scholar 

  8. Sakai K, Taniguchi M, Miura S, Ohara H, Matsumoto T, Shirai Y (2008) J Ind Ecol 7:63–74

    Article  Google Scholar 

  9. Cabedo L, Feijoo JL, Villanueva MP, Lagaron JM, Gimenez E (2006) Macromol Symp 233:191–197

    Article  CAS  Google Scholar 

  10. Lee SH, Wang S (2006) Composites Part A 37:80–91

    Article  CAS  Google Scholar 

  11. Phillips CO, Claypole TC, Gethin DT (2008) J Mater Process Tech 200:221–231

    Article  CAS  Google Scholar 

  12. Perez-Camero G, Vazquez B, Muñoz-Guerra S (2001) J Appl Polym Sci 82:2027–2036

    Article  CAS  Google Scholar 

  13. Shin BY, Lee SI, Shin YS, Balakrishnan S, Narayan R (2004) Polym Eng Sci 44:1429–1439

    Article  CAS  Google Scholar 

  14. Zhao K, Deng Y, Chen JC, Chen CQ (2003) Biomaterials 24:1041–1045

    Article  CAS  Google Scholar 

  15. Gupta AP, Kumar V (2007) Eur Polym J 43:4053–4074

    Article  CAS  Google Scholar 

  16. Lam KH, Nijenhuis AJ, Bartels H, Postema AR, Jonkman MF, Pennings AJ, Nieuwenhuis P (1995) J Appl Biomater 6:191–197

    Article  CAS  Google Scholar 

  17. Okamura Y, Kabata K, Kinoshita M, Saitoh D, Takeoka S (2009) Adv Mater 21:4388–4392

    Article  CAS  Google Scholar 

  18. Rhim JW, Hong SI, Ha CS (2009) LWT Food Sci Technol 42:612–617

    Article  CAS  Google Scholar 

  19. Viljanmaa M, Sodergard A, Tormala P (2002) Int J Adhes Adhes 22:219–226

    Article  CAS  Google Scholar 

  20. Ochi S (2008) Mech Mater 40:446–452

    Article  Google Scholar 

  21. Andricic B, Kovacic T, Perinovic S, Grgic A (2008) Macromol Symp 263:96–101

    Article  CAS  Google Scholar 

  22. Suesat J, Phillips DAS, Wilding MA, Farrington DW (2006) Polymer 14:5993–6002

    Google Scholar 

  23. EFPG—SUSTAINPACK reports (2007) Report on recycling ability of biodegradable matrices in the plastic recycling stream (http://www.sustainpack.com/project%20reports/INPG-EFPG_D5.17B.pdf)

  24. Environmental benefits of recycling—2010 update. WRAP final report. March 2010 (http://www.wrap.org.uk/wrap_corporate/publications/benefitsrecycling.html), Accessed on 15.03.2011

  25. Graupner N, Herrmann AS, Müssig J (2009) Composites Part A Appl. S. 40:810–821

    Google Scholar 

  26. Nyambo C, Mohanty AK, Misra M (2010) Biomacromolecules 11:1654–1660

    Article  CAS  Google Scholar 

  27. Guimarães JL, Wypych F, Saul CK, Ramos LP, Satyanarayana KG (2010) Carbohydr Polym 80:130–138

    Article  Google Scholar 

  28. University of OULU—SUSTAINPACK reports (2005) Dry refining of fibres (http://www.sustainpack.com/project%20reports/UOULU_D5.05.pdf)

  29. Żenkiewicz M, Richert J, Rytlewski P, Moraczewski K, Stepczyńska M, Karasiewicz T (2009) Polym Test 28:412–418

    Article  Google Scholar 

  30. Franco-Marques E, Mendez JA, Pelach MA, Vilaseca F, Bayer J, Mutje P (2011) Chem Eng J 166:1170–1178

    Article  CAS  Google Scholar 

  31. Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Compos Sci Technol 67:1627–1639

    Article  CAS  Google Scholar 

  32. Nygard P, Tanem BS, Karlsen T, Brachet P, Leinsvang B (2008) Compos Sci Technol 68:3418–3424

    Article  CAS  Google Scholar 

  33. Pillin I, Montrelay N, Bourmaud A, Grohens Y (2008) Polym Degr Stab 93:321–328

    Article  CAS  Google Scholar 

  34. Le Duigou A, Pillin I, Bourmaud A, Davies P, Baley C (2008) Compostes A 39:1471–1478

    Article  Google Scholar 

Download references

Acknowledgments

The work reported is part of the Sustainpack project. An international cooperative project financed by European Union thorough grant NMP3—CT—2004—500311. The authors want to thank their partners in this project: Ecole Francaise de Papeterie et des Industries Grafiques (EFPG) and the University of Oulu for their cooperation and supply of raw materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Girones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez, J.P., Girones, J., Mendez, J.A. et al. Recycling Ability of Biodegradable Matrices and Their Cellulose-Reinforced Composites in a Plastic Recycling Stream. J Polym Environ 20, 96–103 (2012). https://doi.org/10.1007/s10924-011-0333-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0333-1

Keywords

Navigation