Skip to main content
Log in

Synthesis of Silver Nano-cubes and Study of Their Elastic Properties Using X-Ray Diffraction Line Broadening

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Poly(vinyl pyrrolidone) (PVP) protected silver nano-cubes (AgNCs) have been prepared through the chemical reduction using ethylene glycol as a reducing agent. High resolution transmission electron microscopic study (HRTEM) gives the average size of the prepared silver nanoparticles as 100 nm approximately with a morphology of cubic shape. The average crystalline size and lattice strain has been calculated from the peak broadening of the X-ray diffraction pattern (XRD) of silver nano-cubes. All the elastic properties such as strain, stress and energy density of prepared nanoparticles have been calculated using different modified models of the Williamson Hall Method. Here size and strain have also been calculated from the size–strain plot (SSP) method. UV/Vis study shows an absorption peak due to surface plasmon resonance (SPR) in the visible range at 2.79 eV and photoluminescence, which gives an emission spectra in the visible range at 2.53 eV, confirming a band gap in the silver nano-cubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kreibig, U., Vollmer, M.: Optical Properties of Metal Clusters. Springer, Berlin Heidelberg (1995)

    Book  Google Scholar 

  2. Zhao, Y.A., Lu, K.: Grain-size dependence of thermal properties of nanocrystalline elemental selenium studied by X-ray diffraction. Phys. Rev. B 56, 14330 (1997)

    Article  Google Scholar 

  3. Rietveld, H.M.: Line profiles of neutron powder diffraction peaks for structure refinement. Acta. Crystallogr. 22, 151–152 (1967)

    Article  Google Scholar 

  4. Balzar, D., Ledbetter, H.J.: Voigt function modeling in Fourier analysis of size and strain broadened X-ray diffraction peaks. Appl. Crystallogr. 26, 97–103 (1993)

    Article  Google Scholar 

  5. Warren, B.E., Averbach, B.L.: The effect of cold-work distorsion on X-ray pattems. J. Appl. Phys. 21, 595 (1950)

    Article  Google Scholar 

  6. Zak, A.K., Majid, W.H.A., Abrishami, M.E., Yousefi, R., Parvizi, R.: Synthesis, magnetic properties and X-ray analysis of Zn0.97X0.03O nanoparticles (X = Mn, Ni, and Co) using Scherrer and size–strain plot methods. Solid State Sci. 14, 488–494 (2012)

    Article  Google Scholar 

  7. Chaure, N.B., Pal, C., Barard, S., Kreouzis, T., Ray, A.K., Cammidge, A.N., Chambrier, I., Cook, M.J., Murphy, C.E., Cain, M.G.: A liquid crystalline copper phthalocyanine derivative for high performance organic thin film transistors. J. Mater. Chem. 22, 19179–19189 (2012)

    Article  Google Scholar 

  8. Prabhu, Y.T., Rao, K.V., Kumar, V.S.S., Kumari, B.S.: X-ray analysis by Williamson–Hall and size–strain plot methods of ZnO nanoparticles with fuel variation. World J. Nano Sci. Eng. 4, 21–28 (2014)

    Article  Google Scholar 

  9. Sun, Y., Xia, Y.: Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 (2002)

    Article  Google Scholar 

  10. Kauffmann, Y.: Characterization of micro-strains in nano-crystalline materials. Master Israel Institute of Technology (2003)

  11. De Keijser, T.H., Langford, J.I., Mittemeijer, E.J., Vogels, A.B.P.: Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening. J. Appl. Crystallogr. 15, 308–314 (1982)

    Article  Google Scholar 

  12. Kodiyath, R., Malak, S.T., Combs, Z.A., et al.: Assemblies of silver nanocubes for highly sensitive SERS chemical vapor detection. Mater. Chem. A 1, 2677–2928 (2013)

    Article  Google Scholar 

  13. Lee, C.F., Chang, C.L., Yang, J.C., et al.: Morphological determination of face-centered-cubic metallic nanoparticles by X-ray diffraction. J. Colloid Interface Sci. 369, 129–133 (2012)

    Article  Google Scholar 

  14. Kan, C.X., Zhu, J.J., Zhu, X.G.: Silver nanostructures with well controlled shapes: synthesis, characterization and growth mechanisms. J. Phys. D: Appl. Phys. 41, 155304 (2008)

    Article  Google Scholar 

  15. Wang, J., Gong, J., Xiong, Y., Yang, J., Gao, Y., Liu, Y., Lu, X., Tang, Z.: Shape-dependent electrocatalytic activity of monodispersed gold nanocrystals toward glucose oxidation. Chem. Commun. 47, 6894–6896 (2011)

    Article  Google Scholar 

  16. Ramasamy, V., Praba, K., Murugadoss, G.: Study of optical and thermal properties in nickel doped ZnS nanoparticles using surfactants. Superlattices Microstruct. 51, 699–714 (2012)

    Article  Google Scholar 

  17. Bernabò, M., Pucci, A., Ramanitra, H.H., Ruggeri, G.: Polymer nanocomposites containing anisotropic metal nanostructures as internal strain indicators. Materials 3, 1461–1477 (2010)

    Article  Google Scholar 

  18. Sun, Y., Yin, Y., Mayers, B.T., Herricks, T., Xia, Y.: Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 14, 4736–4745 (2002)

    Article  Google Scholar 

  19. Soltani, N., Dehzangi, A., Kharazmi, A., Saion, E., Yunus, W.M.M., Majlis, B.Y., Zare, M.R., Gharibshahi, E., Khalilzadeh, N.: Study of optical properties of cds/pbs and pbs/cds heterojunction thin films deposited using solution growth technique. Chalcogenide Lett. 11, 79–90 (2014)

    Google Scholar 

  20. Birkholz, M.: Thin Film Analysis by X-ray Scattering. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim (2006)

    Google Scholar 

  21. Begum, A., Hussain, A., Rahman, A.: Effect of deposition temperature on the structural and optical properties of chemically prepared nanocrystalline lead selenide thin films, Beilstein. J. Nanotechnol. 3, 438–443 (2012)

    Google Scholar 

  22. Sarkar, S., Das, R.: Shape effect on the elastic properties of Ag nanocrystals. IET Micro Nano Lett. 13, 312–315 (2018)

    Article  Google Scholar 

  23. Lalena, J.N., Cleary, D.A.: Principles of Inorganic Materials Design. Wiley, Hoboken (2010)

    Book  Google Scholar 

  24. Nye, J.F.: Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press, Oxford (1985)

    MATH  Google Scholar 

  25. Yan, Z., Vincent, J.I.: General compliance transformation relations for all seven crystal systems. Sci. China Phys. Mech. Astron. 56, 694 (2013)

    Article  Google Scholar 

  26. Zhang, J., Zhang, Y., Xu, K.W., Ji, V.: General compliance transformation relation and applications for anisotropic hexagonal metals. Solid State Commun. 139, 87 (2006)

    Article  Google Scholar 

  27. Courtney T., Mechanical Behavior of Materials, McGraw-Hill, 0-07-013265-8, 620.11292C86M

  28. Sarma, H., Sarma, K.C.: X-ray peak broadening analysis of ZnO nanoparticles derived by precipitation method. Int. J. Sci. Res. Publ. 4, 2250–3153 (2014)

    Google Scholar 

  29. Prince, E., Stalick, J.K.: Accuracy in powder diffraction II. NIST Spec. Publ. 597, 567 (1992)

    Google Scholar 

  30. Tagliente, M.A., Massaro, M.: Strain-driven (002) preferred orientation of ZnO nanoparticles in ion-implanted silica. Nucl. Instrum. Methods Phys. Res. B 266, 1055–1061 (2008)

    Article  Google Scholar 

  31. Thool, G.S., Singh, A.K., Singh, R.S., Gupta, A., Susan, MdABH: Facile synthesis of flat crystal ZnO thin films by solution growth method: a micro-structural investigation. J. Saudi Chem. Soc. 18, 712–721 (2014)

    Article  Google Scholar 

  32. Wilson, A.C.J.: X-ray Optics. Methuen and Co. ltd, London (1949)

    MATH  Google Scholar 

  33. Balzar, D., Ledbetter, H.: Voigt-function modeling in fourier analysis of size- and strain-broadened X-ray diffraction peaks. J. Appl. Crystallogr. 26, 97–103 (1993)

    Article  Google Scholar 

  34. Vives, S., Gaffet, E., Meunier, C.: X-ray diffraction line profile analysis of iron ball milled powders. Mater. Sci. Eng. A 366, 229–238 (2004)

    Article  Google Scholar 

  35. Hellstern, E., Fecht, H.J., Fu, Z., Johnson, W.L., Fu, Z.: Structural and thermodynamic properties of heavily mechanically deformed Ru and AlRu. J. Appl. Phys. 65, 305 (1989)

    Article  Google Scholar 

  36. Nazrov, A.A., Romanov, A.E., Valiev, R.R.: On the nature of high internal stresses in ultrafine grained materials. Nanostruct. Mater. 4, 93 (1994)

    Article  Google Scholar 

  37. Bindu, P., Thomas, S.: Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. of Theor. Appl. Phys. 8, 123–134 (2014)

    Article  Google Scholar 

  38. Dapiaggi, M., Geiger, C.A., Artioli, G.: Microscopic strain in synthetic pyrope-grossular solid solutions determined by synchrotron X-ray powder diffraction at 5 K: the relationship to enthalpy of mixing behavior. Am. Miner. 90, 506–509 (2005)

    Article  Google Scholar 

  39. Eckert, J., Holzer, J.C., Krill, C.E.: Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition. J. Mater. Res. 7, 1751 (1992)

    Article  Google Scholar 

  40. Saravanan, M.S., Sivaprasad, K., Susila, P., Babu, S.K.: Anisotropy models in precise crystallite size determination of mechanically alloyed powders. Phys. B 406, 165–168 (2011)

    Article  Google Scholar 

  41. Mogensen, K.B., Kneipp, K.: Size-dependent shifts of plasmon resonance in silver nanoparticle films using controlled dissolution: monitoring the onset of surface screening effects. J. Phys. Chem. C 118, 28075–28083 (2014)

    Article  Google Scholar 

  42. Mahmudin, L., Suharyadi, E., Utomo, A.B.S., Abraha, B.: Optical properties of silver nanoparticles for surface plasmon resonance (SPR)-based biosensor applications. J. Mod. Phys. 6, 1071–1076 (2015)

    Article  Google Scholar 

  43. Sarkar, S., Das, R.: Presence of chlorpyrifos shows blue shift of the absorption peak ofsilver nanohexagons solution: an indication of etching ofnanocrystals and sensing of chlorpyrifos. Sens. Actuat. B 266, 149–159 (2018)

    Article  Google Scholar 

  44. Garcia, M.A.: Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D Appl. Phys. 44, 283001 (2011)

    Article  Google Scholar 

  45. Mohamed, M.B., Volkov, V., Link, S., El-Sayed, M.A.: The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem. Phys. Lett. 317, 517 (2000)

    Article  Google Scholar 

  46. Feng, A.L., You, M.L., Tian, L., Singamaneni, S., Liu, M., Duan, Z., Lu, T.J., Xu, F., Lin, M.: Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers. Sci. Rep. 5, 7779 (2015). https://doi.org/10.1038/srep07779

    Article  Google Scholar 

  47. Lumdee, C., Yun, B., Kik, P.G.: Gap-plasmon enhanced gold nanoparticle photoluminescence. ACS Photonics 1, 1224–1230 (2014)

    Article  Google Scholar 

  48. Varnavski, O.P., Mohamed, M.B., El-Sayed, M.A., Goodson, T.: Relative enhancement of ultrafast emission in gold nanorods. J. Phys. Chem. B 107, 3101 (2003)

    Article  Google Scholar 

Download references

Acknowledgement

Authors are thankful to the SAIF, NEHU, Shillong, India for conducting the TEM analysis and to Mr. Ratan Boruah, the Technical Asistant, Department of Physics, Tezpur University, Assam, India, for the assistance during the XRD study. The authors are also grateful to FIST- DST Program Govt. of India (Ref. NO. SR/FST/PSI-191/2014, Dated 21.11.2014) for financial grant to the department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratan Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Das, R. Synthesis of Silver Nano-cubes and Study of Their Elastic Properties Using X-Ray Diffraction Line Broadening. J Nondestruct Eval 38, 9 (2019). https://doi.org/10.1007/s10921-018-0549-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-018-0549-2

Keywords

Navigation