Skip to main content
Log in

Dynamic Thermal Tomography of Composites: A Comparison of Reference and Reference-Free Approaches

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Dynamic thermal tomography is a technique that allows the display of “slices” of solids by analyzing the evolution of surface temperature as a function of time. This paper presents the principles of one-sided thermal tomography using reference points and also introduces a technique of thermal tomography that does not require the use of reference point. The diffusion nature of heat conduction in solids causes lateral diffusion, which modifies and complicates the heat flow that is needed to detect defects. In the case of anisotropic composite materials the heat will diffuse more readily in one direction than another. Lateral diffusion can make it difficult to detect (visualize) deep defects, especially those located under shallower ones. Artifacts can be reduced by thresholding timegrams but this may hide small defects. The effectiveness of thermal tomography in detecting impact damage (cracks/delaminations) in composites has been confirmed by numerous experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pikalov, V.V., Melnikova, T.S.: Plasma Tomography. Nauka Publish., Novosibirsk (1995). (in Russian)

    Google Scholar 

  2. Akhmetov, V.D., Fateev, N.V.: Infrared tomography of the lifetime and diffusion length of charge carriers in semi-conductive silicon ingots. Phys. Tech. Semicond. 35(1), 40–47 (2001). (in Russian)

    Google Scholar 

  3. Martin, M., Dabat-Blondeaux, C., Unger, M., Sedlmair, J., Parkinson, D.Y., Bechtel, H.A., Illman, B., Castro, J.M., Keiluweit, M., Buschke, D., Ogle, B., Nasse, M.J., Hirschmugl, C.J.: 3D spectral imaging with synchrotron Fourier transform infrared spectro–microtomography. Nat. Methods 10, 861–864 (2013)

    Article  Google Scholar 

  4. Barrett, A., Myers, P.S., Sadowsky, N.L.: Detection of breast cancer by microwave radiometer. Radio Sci. 12(68), 167–171 (1977)

    Article  Google Scholar 

  5. Troyitski, V.S.: To the theory of contact radiothermometric measurement of inner body temperature. Izv. Vuzov Radiophys. Ser. 24(9), 1054–1058 (1981). (in Russian)

    Google Scholar 

  6. Pasechnik, V.E., Anosov, A.A., Barabanenkov, Yu.N.: Determining in-depth temperature in biological objects by passive acoustic thermotomography. In: Proceedings of Acoustics, Science Session, pp. 375–378. Nizhny Novgorod State University, Nizhny Novgorod (2002, in Russian)

  7. Xu, Y., Wei, X., Wang, G.: Temperature-change-based thermal tomography. Int. J. Biomed. Imaging (2009). https://doi.org/10.1155/2009/464235

    Article  Google Scholar 

  8. Rieke, V., Pauly, K.B.: MR thermometry. J. Magn. Reson. Imaging 27(2), 376–390 (2008)

    Article  Google Scholar 

  9. Rosencwaig, A., Gersho, A.: Thermal-wave imaging. Science 218, 223–228 (1982)

    Article  Google Scholar 

  10. Almond, D.P., Patel, P.: Photothermal Science and Techniques. Chapman and Hall, London (1996)

    Google Scholar 

  11. Mulaveesala, R., Tuli, S.: Theory of frequency modulated thermal wave imaging for nondestructive subsurface defect detection. Appl. Phys. Lett. 19(19), 191913 (2006)

    Article  Google Scholar 

  12. Mandelis, A., Mieszkowski, M.: A thermal wave sub-surface defect imaging and tomography apparatus. U.S. Patent 4,950,897, 1990

  13. Mandelis, A.: Theory of photothermal wave diffraction tomography via spatial Laplace spectral decomposition. J. Opt. Soc. Am. A6, 298 (1991)

    MATH  Google Scholar 

  14. Mandelis, A.: Theory of photothermal wave diffraction tomography via spatial Laplace spectral decomposition. J. Phys. A 24, 2485 (1991)

    Article  Google Scholar 

  15. Munidasa, M., Mandelis, A., Ferguson, C.: Resolution of photothermal tomographic imaging of sub-surface defects in metals with ray-optic reconstruction. Appl. Phys. 54, 244 (1992)

    Article  Google Scholar 

  16. Pade, O., Mandelis, A.: Computational thermal-wave tomography of aluminum with ray-optic reconstruction. Rev. Sci. Instrum. 64, 3548 (1993)

    Article  Google Scholar 

  17. Kaiplavi, S., Mandelis, A., Wang, X., Feng, T.: Photothermal tomography for the functional and structural evaluation, and early mineral loss monitoring in bones. Biomed. Opt. Express 5(8), 2488–2502 (2014)

    Article  Google Scholar 

  18. Kline, R.A., Winfree, W.P., Bakirov, V.F.: A new approach to thermal tomography. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Quantitative Nondestructive Evaluation, vol. 22, pp. 682–687 (2003)

  19. Busse, G., Renk, F.: Stereoscopic depth analysis by thermal wave transmission for NDE. Appl. Phys. Lett. 42(4), 366–368 (1983)

    Article  Google Scholar 

  20. Nowakowski, A., Kaczmarek, M.: Active dynamic thermography—problems of implementation in medical diagnostics. QIRT J. 8(1), 89–106 (2011)

    Article  Google Scholar 

  21. Milovanović, B., Pečur, I.B.: Review of active IR thermography for detection and characterization of defects in reinforced concrete. J. Imaging 2(2), 11 (2011)

    Article  Google Scholar 

  22. Vavilov, V.P., Shiryaev, V.V.: Thermal tomograph. U.S.S.R. Patent 1,266,308, 1984

  23. Vavilov, V.P., Jin, H., Thomas, R., Favro, L.: Experimental thermal tomography of solids by using one-sided pulse heating. Defectoscopiya 12, 122–130 (1990). (in Russian)

    Google Scholar 

  24. Vavilov, V., Bison, P.G., Bressan, C., Grinzato, E.: Some new ideas in dynamic thermal tomography. In: Proceedings of Eurotherm Seminar #27 “Quant. Infrared Thermography-QIRT’92”, Chatenay-Malabry, France, 7–9 July, 1992, pp. 259–255

  25. Storozhenko, V.A., Melnik, S.I., Orel, R.P.: A new algorithm of thermal tomography. Methods and instrumentation of quality inspection. No. 4, pp. 26–30 (1999, in Ukrainian)

  26. Winfree, W.P., Plotnikov, Yu.: Defect characterization in composites using a thermal tomography algorithm. In: Thompson, R., Chimenti, D. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 18, pp. 1343–1350. Kluwer Academic/Plenum Publishers, New York (1999)

    Chapter  Google Scholar 

  27. Kush, D.V., Rapoport, D.A., Budadin, O.N.: Inverse problem of automated thermal testing. Defectoscopiya 5, 64–68 (1988). (in Russian)

    Google Scholar 

  28. Bakirov, V.F., Kline, R.A.: Diffusion-based thermal tomography. J. Heat Transf. 127, 1276–1279 (2005)

    Article  Google Scholar 

  29. Hyvönen, N., Mustonen, L.: Thermal tomography with unknown boundary. arXiv:1611.06862v2 [math. NA]. (2017).

  30. Toivanen, J.M., Kolehmainen, V., Tarvainen, T., Orlande, H.R.B., Kaipio, J.P.: Simultaneous estimation of spatially distributed thermal conductivity, heat capacity and surface heat transfer coefficient in thermal tomography. Int. J. Heat Mass Transf. 55, 7958–7968 (2012)

    Article  Google Scholar 

  31. Toivanen, J.M., Tarvainen, T., Huttunen, J.M.J., Savolainen, T., Orlande, H.R.B., Kaipio, J.P., Kolehmainen, V.: 3D thermal tomography with experimental measurement data. Int. J. Heat Mass Transf. 78, 1126–1134 (2014)

    Article  Google Scholar 

  32. Vavilov, V.P.: Modeling thermal NDT problems. Int. J. Heat Mass Transf. 72, 75–86 (2014)

    Article  Google Scholar 

  33. Vavilov, V.P.: Modeling and characterizing impact damage in carbon fiber composites by thermal/infrared non-destructive testing. Composites B 61, 1–10 (2014)

    Article  Google Scholar 

  34. Vavilov, V.P., Plesovskikh, A.V., Chulkov, A.O., Nesteruk, D.A.: A complex approach to the development of the method and equipment for thermal nondestructive testing of CFRP cylindrical parts. Composites B 68, 375–384 (2015)

    Article  Google Scholar 

  35. Vavilov, V.P.: Thermal/infrared testing. In: Kluev, V.V. (ed.) Nondestructive Testing Handbook, pp. 1–485. Spektr Publisher, Moscow (2009)

    Google Scholar 

  36. Vavilov, V.P., Pawar, S.: Determining the lateral size of subsurface defects using active thermal nondestructive testing. Russ. J. NDT 52(9), 528–531 (2016)

    Google Scholar 

  37. Krapez, J.-C., Balageas, D.L.: Early detection of thermal contrast in pulsed stimulated infrared thermography. In: Proceedings of Quantitative Infrared Thermography QIRT-94, Eurotherm Seminar #42, Sorrento, Italy, 1994, pp. 260–266

  38. Balageas, D.L., Krapez, J.-C., Cielo, P.: Pulsed photo-thermal modeling of layered materials. J. Appl. Phys. 59(2), 348–357 (1986)

    Article  Google Scholar 

  39. Balageas, D.L., Deom, A.A., Boscher, D.M.: Characterisation and NDT of carbon epoxy composites by a pulsed photothermal method. Mater. Eval. 45(4), 461–465 (1987)

    Google Scholar 

  40. Shepard, S.M., Hou, Y., Ahmed, T., Lhota, J.R.: Reference-free analysis of flash thermography data. In: Proceedings of SPIE “Thermosense-XXVIII”, vol. 6205, 2006, p. 620513

  41. Shepard, S.M., Lhota, J.R., Rubadeux, B.A., Wang, D., Ahmed, T.: Reconstruction and enhancement of active thermographic image sequences. Opt. Eng. 42(5), 1337–1342 (2003)

    Article  Google Scholar 

  42. Sun, J.G.: Method for thermal tomography of thermal effusivity from pulsed thermal imaging. US Patent 7,365,330, 2006

  43. Sun, J.G.: Method for implementing depth deconvolution algorithm for enhanced thermal tomography 3D imaging. U.S. Patent 8,465,200, 2013

  44. Sun, J.G.: Quantitative three-dimensional imaging of heterogeneous materials by thermal tomography. J. Heat Transf. 138, 112004-1–112004-10 (2016)

    Article  Google Scholar 

  45. Three-Dimensional Thermal Tomography (3DTT) Advances Cancer Treatment. US Dept. of Energy, Argonne National Lab, USA, September 2012

  46. Harris, A.W., Drube, L.: Thermal tomography of asteroid surface structure. Astrophys. J. (2016). https://doi.org/10.3847/0004-637X/832/2/127

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Russian Scientific Foundation Grant #17-19-01047 (numerical modeling) and in part by Tomsk Polytechnic University Competitiveness Enhancement Program Grant (experimentation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Vavilov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vavilov, V.P., Kuimova, M.V. Dynamic Thermal Tomography of Composites: A Comparison of Reference and Reference-Free Approaches. J Nondestruct Eval 38, 2 (2019). https://doi.org/10.1007/s10921-018-0540-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-018-0540-y

Keywords

Navigation